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1. Statistical Learning in Latent

Data Models



Supervised Learning

• Given input-output pair of random variables (X ,Y ) taking values in

arbitrary input set X ⊂ Rp and arbitrary output set Y ⊂ Rq from

unknown distribution P.

• Modeling phase: Mθ : X 7→ Y of parameter θ ∈ Rd , called the

predictor.

• Performance measured using a loss function ` : Y × Y 7→ R where

`(y , y ′) is the loss incurred when the true output is y whereas y ′ is

predicted.

• Training phase boils down to computing the following quantity:

argmin
θ∈Rd

L(θ) = argmin
θ∈Rd

{
L(θ) + R(θ)

}
(1)

with

L(θ) = E(x,y)∼P
[
`(y ,Mθ(x))

]
or L(θ) = n−1

n∑
i=1

`(yi ,Mθ(xi )) .

(2)
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Nonconvex Optimization

• For convex problems, we generally use |L(θ)− L(θ∗)| (or

‖θ − θ∗‖2
) as stability condition. where θ∗ is the optimal solution

that can efficiently be found in the convex case.

• Yet, in the nonconvex case we use ‖∇L(θ)‖2, as advocated in

(Nesterov, 2004) and (Ghadimi and Lan, 2013).

• A point θ∗ is said to be ε-stationary if ‖∇L(θ∗)‖2 ≤ ε. A stochastic

iterative algorithm is said to achieve ε-stationarity in Γ > 0

iterations if E
[ ∥∥∥∇L(θ(R))

∥∥∥2 ]
≤ ε.
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Latent Data Models

• Models where the input-output relationship is not completely

characterized by the observed (x , y) ∈ X×Y pairs in the training set

• Dependence on a set of unobserved latent variables z ∈ Z ⊂ Rm.

• Mandatory: Simulation step to complete the observed data with

realizations of the latent variables.

• Formally, this specificity in our setting implies extending the loss

function ` to accept a third argument as follows:

`(y ,Mθ(x)) =

∫
Z

`(z , y ,Mθ(x))dz . (3)
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Some Examples of Latent Data Models

• Include the incomplete data framework, i.e., some observations are

missing, but are far broader than that: for example, the latent

structure could stem from the unknown labels in mixture models or

hidden states in Hidden Markov Models.

• Missing Data: y stands for the observed data and the latent

variables z are the missing data.

• Mixed Effects Models: the latent variables z are the random

effects and identifying the structure of the latent data mainly

corresponds to the inter-individual variability among the individuals

of the dataset.

• Mixture Models: the latent variables correspond to the unknown

mixture labels taking values in a discret finite set.

5



Quick Overview

• L-Smoothness: A function f : Rd 7→ R is L-smooth if and only if it

is differentiable and its gradient is L-Lipschitz-continuous, i.e., for all

(θ, ϑ) ∈ Rd × Rd :

‖∇f (θ)−∇f (ϑ)‖ ≤ L ‖θ − ϑ‖ . (4)

• We will deal with constrained (argminθ∈Θ L(θ)) and unconstrained

problems.

Algorithm Gradient Non-gradient MC Step.

SGD O(1/ε2) (Ghadimi and Lan, 2013) ? x γk
GD O(n/ε) (Nesterov, 2004) ? x γ

SVRG/SAGA O(n2/3/ε) (Reddi et al., 2016) O(n2/3/ε) (Karimi et al., 2019c) x γk
MISO O(n/ε) (Karimi et al., 2019b) O(n/ε) (Karimi et al., 2019b) x —

MISSO O(n/ε) (Karimi et al., 2019b) O(n/ε) (Karimi et al., 2019b) X —

Biased SA O(c0 + log(n)
ε
√
n

) (Karimi et al., 2019a) O(c0 + log(n)
ε
√
n

) (Karimi et al., 2019a) X γk

Table 1: ERM methods: Table comparing the complexity, measured in terms

of iterations, of different algorithms for non-convex optimization. MC stands

for Monte Carlo integration of the drift term and Step. for stepsize.
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2. Nonconvex Risk Minimization



2. Nonconvex Risk Minimization

2.1 Incremental Method for

Non-smooth Nonconvex Objective:

with Applications to Logistic Regression

and Bayesian Deep Learning



Large-scale machine learning

Constrained Minimization of large sum of functions

We are interested in the minimization of a large finite-sum of functions:

min
θ∈Θ

L(θ) :=
1

n

n∑
i=1

Li (θ) , (5)

where Θ is a convex, compact, and closed subset of Rp, and for any

i ∈ J1, nK, the function Li : Rp → R is bounded from below and is

(possibly) nonconvex and non-smooth.

Some examples Given data points (xi , i ∈ J1, nK) and observations

(yi , i ∈ J1, nK)

• Maximum likelihood estimation: L(θ) , −
∑N

i=1 log pi (yi ,θ)

• Variational inference: L(θ) ,
∑N

i=1 KL ( qi (w ;θ)|| pi (w |yi , xi ))

• Logistic regression: L(θ) ,
∑N

i=1 log(1 + e−yi<θ,xi>)
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Majorization-Minimization principle

Figure 1: Majorization-Minimization principle

• Iteratively minimize locally tight upper bounds on the objective

• Drives the objective function downards

• Examples: the proximal gradient algorithm (Beck and Teboulle,

2009), the EM algorithm (McLachlan and Krishnan, 2007) and

variational inference (Wainwright and Jordan, 2008). 8



Notations and Assumptions

• Constrained optimization: Θ convex subset of Rp.

• For all i ∈ J1, nK, Li is continuously differentiable on Θ.

• For all i ∈ J1, nK, Li is bounded from below, i.e. there exist a

constant Mi ∈ R such as for all θ ∈ Θ, Li (θ) ≥ Mi .

• L̂i (θ; ·) : Rp → R is a surrogate of Li at θ if the following properties

are satisfied:

1. the function ϑ→ L̂i (θ;ϑ) is continuously differentiable on Θ

2. for all ϑ ∈ Θ, L̂i (θ;ϑ) ≥ Li (ϑ) , L̂i (θ;θ) = Li (θ) and

∇L̂i (θ;ϑ)
∣∣∣
ϑ=θ

= ∇Li (ϑ)
∣∣∣
ϑ=θ

.
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Incremental Surrogate Minimization

The incremental scheme of (Mairal, 2015) computes surrogate functions,

at each iteration of the algorithm, for a mini-batch of components:

Algorithm 1 MISO algorithm

Initialization: given an initial parameter estimate θ̂
(0)

, for all i ∈ J1, nK
compute a surrogate function ϑ→ L̂i (θ̂

(0)
;ϑ).

Iteration k: given the current estimate θ̂
(k)

:

1. Pick ik uniformly from J1, nK.

2. Update Ak+1
i (θ) as:

Ak+1
i (θ) =

L̂i (θ; θ̂
(k)

), if i = ik

Ak
i (θ), otherwise.

3. Set θ̂
(k+1)

∈ argminθ∈Θ
1
n

∑n
i=1A

k+1
i (θ).
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Intractable surrogate functions

• In many cases of interest those surrogates are intractable.

• Denote by z = (zi ∈ Z, i ∈ J1, nK) where Z is a subset of Rmi as set

of latent variables.

• For all i ∈ J1, nK, let µi be a σ-finite measure on the Borel σ-algebra

Z = B(Z).

• Pi = {pi (zi , θ); θ ∈ Θ} be a family of probability densities with

respect to µi , and ri,θ : Z×Θ→ R be functions such that:

L̂i (θ;θ) :=

∫
Z

ri (θ;θ, zi )pi (zi ;θ)µi (dzi ) ∀ (θ,θ) ∈ Θ×Θ . (6)

The surrogate function denoted L̂i (θ;ϑ) is fully defined by the pair

(ri (θ;θ, zi ), pi (zi ,θ)).
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Examples of intractable surrogates

Incremental EM algorithm

• In the missing data context, let ci (zi ,θ) be the joint likelihood of

the observations and the latent data referred to as the complete

likelihood.

• gi (θ) ,
∫

Z
ci (zi ,θ)µi (zi ) is the likelihood of the observations (in

which the latent variables are marginalized).

The incremental EM algorithm falls into the incremental MM framework:

• For i ∈ J1, nK and θ ∈ Θ the loss function `i (θ) , − log gi (θ)

• for ϑ ∈ Θ the surrogate function L̂i (θ;ϑ), introduced in the

pioneering paper (Neal and Hinton, 1998), is defined by

L̂i (θ;ϑ) ,
∫

Z

log
pi (zi ,θ)

ci (zi , ϑ)
pi (zi ,θ)µi (zi ) = KL (pi (zi ,θ) || pi (zi , ϑ))+`i (ϑ)

(7)

In most cases, this surrogate is intractable.
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Examples of intractable surrogates

Variational Inference Let x = (xi , i ∈ J1, nK) and y = (yi , i ∈ J1, nK) be

i.i.d. input-output pairs and w be a global latent variable taking values in

W a subset of RJ .

A natural decomposition of the joint distribution is:

p(y ,w |x) = π(w)
∏n

i=1 p(yi |xi ,w) . (8)

The variational inference problem boils down to minimizing the following

KL divergence:

min
θ∈Θ

L(θ) := KL (q(w ;θ) || p(w |y , x))

:= Eq(w ;θ)

[
log
(
q(w ;θ)/p(w |y , x)

)]
.

(9)

Using (8), we decompose L(θ) = n−1
∑n

i=1 Li (θ) + const. where:

Li (θ) :=− Eq(w ;θ)

[
log p(yi |xi ,w)

]
+

1

n
Eq(w ;θ)

[
log q(w ;θ)/π(w)

]
= ri (θ) + R(θ) .

(10)
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Examples of intractable surrogates

Variational Inference

• MISSO method with a quadratic surrogate function defined as:

L̂i (θ;θ) := Li (θ) +
〈
∇θLi (θ) |θ − θ

〉
+

L

2
‖θ − θ‖2 . (11)

• Let t : Rd ×Θ 7→ Rd be a differentiable function w.r.t. θ ∈ Θ s.t.

w = t(z ,θ), where z ∼ Nd(0, I ), is distributed according to q(·,θ).

• By (Blundell et al., 2015, Proposition 1), the gradient of −ri (·) in

(10) is (re-parametrization trick):

∇θEq(w ;θ)

[
log p(yi |xi ,w)

]
= Ez∼Nd (0,I )

[
Jtθ(z ,θ)∇w log p(yi |xi ,w)

∣∣
w=t(z,θ)

]
.

• For most cases, the term ∇R(θ) can be evaluated in closed form.

ri (θ;θ, z) :=
〈
∇θd(θ)− Jtθ(z ,θ)∇w log p(yi |xi ,w)

∣∣
w=t(z,θ)

|θ − θ
〉

+
L

2
‖θ − θ‖2 .
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Proposed Method: MISSO

• Minimization by Incremental Stochastic Surrogate Optimization

(MISSO) method: expectation approximated by Monte Carlo

integration.

• Denote by M ∈ N the Monte Carlo batch size and let zm ∈ Z,

m = 1, ...,M be a set of samples. These samples can be drawn

(Case 1) i.i.d. from the distribution pi (·;θ) or (Case 2) from a

Markov chain with the stationary distribution pi (·;θ).

• We define the following stochastic surrogate:

L̃i (θ;θ, {zm}Mm=1) :=
1

M

M∑
m=1

ri (θ;θ, zm) (12)
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MISSO Algorithm

Algorithm 2 MISSO algorithm

Initialization: θ̂
(0)

; a sequence of non-negative numbers {M(k)}∞k=0.

For all i ∈ J1, nK, draw M(0) samples from pi (·; θ̂
(0)

) and Ã0
i (θ) :=

L̃i (θ; θ̂
(0)
, {z (0)

i,m}
M(k)

m=1).
Iteration k: given the current estimate θ̂

(k)
:

1. Pick a function index ik uniformly on J1, nK.

2. Draw M(k) Monte-Carlo samples from pi (·; θ̂
(k)

).

3. Update the individual surrogate functions recursively as:

Ãk+1
i (θ) =

L̃i (θ; θ̂
(k)
, {z (k)

i,m}
M(k)

m=1), if i = ik

Ãk
i (θ), otherwise.

(13)

4. Set θ̂
(k+1)

∈ argminθ∈Θ L̃(k+1)(θ) := 1
n

∑n
i=1 Ã

k+1
i (θ).

16



Convergence analysis: Assumptions

(S1) For all i ∈ J1, nK and θ ∈ Θ, the function L̂i (θ;θ) is convex

w.r.t. θ, and it holds

L̂i (θ;θ) ≥ Li (θ), ∀ θ ∈ Θ , (14)

where the equality holds when θ = θ.

(S2) For any θi ∈ Θ, i ∈ J1, nK and some ε > 0, the difference function

ê(θ; {θi}ni=1) := 1
n

∑n
i=1 L̂i (θ;θi )− L(θ) is defined for all θ ∈ Θε and

differentiable for all θ ∈ Θ, where Θε = {θ ∈ Rd , infθ′∈Θ ‖θ − θ′‖ < ε}
is an ε-neighborhood set of Θ. Moreover, for some constant L, the

gradient satisfies

‖∇ê(θ; {θi}ni=1)‖2 ≤ 2L ê(θ; {θi}ni=1), ∀ θ ∈ Θ . (15)
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Convergence analysis: Assumptions

(H1) For all i ∈ J1, nK, θ ∈ Θ, zi ∈ Z, the measurable function

ri (θ;θ, zi ) is convex in θ and is lower bounded.

(H2) For the samples {zi,m}Mm=1, there exists finite constants Cr and Cgr

such that

Cr := sup
θ∈Θ

sup
M>0

1√
M

Eθ

[
sup
θ∈Θ

∣∣∣∣∣
M∑

m=1

{
ri (θ;θ, zi,m)− L̂i (θ;θ)

}∣∣∣∣∣
]

(16)

Cgr := sup
θ∈Θ

sup
M>0

√
MEθ

sup
θ∈Θ

∣∣∣∣∣ 1

M

M∑
m=1

L̂′i (θ,θ − θ;θ)− r ′i (θ,θ − θ;θ, zi,m)

‖θ − θ‖

∣∣∣∣∣
2


(17)

for all i ∈ J1, nK, and we denoted by Eθ[·] the expectation w.r.t. a

Markov chain {zi,m}Mm=1 with initial distribution ξi (·;θ), transition kernel

Pi,θ, and stationary distribution pi (·;θ).
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Constrained Optimization

• As problem (5) is a constrained optimization, we consider the

following stationarity measure:

g(θ) := inf
θ∈Θ

L′(θ,θ − θ)

‖θ − θ‖
and g(θ) = g+(θ)− g−(θ) , (18)

where g+(θ) := max{0, g(θ)}, g−(θ) := −min{0, g(θ)} denote the

positive and negative part of g(θ), respectively.

• Note that θ is a stationary point if and only if g−(θ) = 0 (Fletcher

et al., 2002).

• Furthermore, suppose that the sequence {θ̂
(k)
}k≥0 has a limit point

θ that is a stationary point, then one has limk→∞ g−(θ̂
(k)

) = 0.
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Non-asymptotic analysis

Theorem 1

Under (S1), (S2), (H1), (H2). For any Kmax ∈ N, let K be an

independent discrete r.v. drawn uniformly from {0, ...,Kmax − 1} and

define the following quantity:

∆(Kmax) := 2nLE[L̃(0)(θ̂
(0)

)−L̃(Kmax)(θ̂
(Kmax)

)]+
Kmax−1∑
k=0

4LCr√
M(k)

, (19)

Then we have following non-asymptotic bounds:

E
[
‖∇ê(K)(θ̂

(K)
)‖2
]
≤

∆(Kmax)

Kmax
(20)

E[g−(θ̂
(K)

)] ≤

√
∆(Kmax)

Kmax
+

Cgr

Kmax

Kmax−1∑
k=0

M
−1/2
(k) . (21)

20



Non-asymptotic analysis

∆(Kmax) := 2nLE[L̃(0)(θ̂
(0)

)− L̃(Kmax)(θ̂
(Kmax)

)] +

Kmax−1∑
k=0

4LCr√
M(k)

, (22)

Then we have following non-asymptotic bounds:

E
[
‖∇ê(K)(θ̂

(K)
)‖2] ≤ ∆(Kmax)

Kmax
(23)

E[g−(θ̂
(K)

)] ≤
√

∆(Kmax)

Kmax
+

Cgr

Kmax

Kmax−1∑
k=0

M
−1/2
(k) . (24)

• ∆(Kmax) is finite for any Kmax ∈ N
• MISO method can be analyzed as a special case of the MISSO

method satisfying Cr = Cgr = 0

• Then, Eq. (24) gives a non-asymptotic rate of

E[g
(K)
− ] ≤ O(

√
nL/Kmax).
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Asymptotic analysis

Under an additional assumption on the sequence of batch size M(k):

Theorem 2

Under (S1), (S2), (H1), (H2). In addition, assume that {M(k)}k≥0

is a non-decreasing sequence of integers which satisfies∑∞
k=0 M

−1/2
(k) <∞. Then:

1. the negative part of the stationarity measure converges almost

surely to zero, i.e., limk→∞ g−(θ̂
(k)

) = 0 a.s..

2. the objective value L(θ̂
(k)

) converges almost surely to a finite

number L, i.e., limk→∞ L(θ̂
(k)

) = L a.s..

In particular, the first result above shows that the sequence {θ̂
(k)
}k≥0

produced by the MISSO method satisfies an asymptotic stationary point

condition.
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Logistic Regression with Missing Covariates

• y = (yi , i ∈ J1, nK) vector of binary responses and zi = (zi,p) ∈ Rp

covariates.

• zi is not fully observed. zi,mis : missing values and zi,obs : observed.

• (zi , i ∈ J1, nK[n]) ∼ N (β,Ω) where β ∈ Rp (i.i.d.)

• Model defined by

logit(P(yij = 0|zi )) = d>ij zi

• Exponential family: Sufficient statistics are S̃i (zi ) , (zi , z
>
i zi ).

• MISSO algorithm consists in picking a set Ik , sampling a Monte

Carlo batch {zk,mi }Mk−1
m=0 for i ∈ Ik and computing the quantities

(s1,k
i , s2,k

i ) as follows:

(s1,k
i , s2,k

i ) =


(

1
Mk

∑Mk−1
m=0 zk,mi , 1

Mk

∑Mk−1
m=0 (zk,mi )>zk,mi

)
if i ∈ Ik

(s1,k−1
i , s2,k−1

i ) otherwise

(25)

Then βk = 1
N

∑N
i=1 s

1,k
i and Ωk = 1

N

∑N
i=1 s

2,k
i − (βk)>βk
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Logistic Regression on TraumaBase

• TraumaBase (http://traumabase.eu) dataset: 15 trauma centers

in France, covering measurements on patients from the initial to last

stage of trauma. (6384 and p = 16 quantitative variables of

influence)

• Predict binary response: severe trauma or not.

• We apply the MISSO method to fit a logistic regression model

Figure 2: Convergence of two components of the vector of parameters β for

the SAEM, the MCEM and the MISSO methods. The convergence is plotted

against the number of passes over the data.
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Bayesian LeNet-5 on MNIST

• N = 60 000 handwritten digits, 28× 28 images, d = 784

• p(w) = N (0, I ), p(yi |xi ,w) = Softmax(f (xi ,w)) where f is a NN.

• Variational distribution for layer j : q(w`, θ`) is a Gaussian

distribution N (µ`, σ
2I )
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Bayesian LeNet-5 on MNIST

• MISSO Updates:

µ
(k)
` =

1

n

n∑
i=1

µ
(τ k

i )
` − γ

n

n∑
i=1

δ̂
(k)

µ`,i and σ(k) =
1

n

n∑
i=1

σ(τ k
i ) − γ

n

n∑
i=1

δ̂
(k)

σ,i ,

(26)

where δ̂
(k)

µ`,i = δ̂
(k−1)

µ`,i and δ̂
(k)

σ,i = δ̂
(k−1)

σ,i for i 6= ik and:

δ̂
(k)

µ`,ik = − 1

M(k)

M(k)∑
m=1

∇w log p(yik |xik ,w)
∣∣∣
w=t(θ̂

(k−1)
,z

(k)
m )

+∇µ`
R(θ̂

(k−1)
) ,

δ̂
(k)

σ,ik = − 1

M(k)

M(k)∑
m=1

z (k)
m ∇w log p(yik |xik ,w)

∣∣∣
w=t(θ̂

(k−1)
,z

(k)
m )

+∇σ R(θ̂
(k−1)

)

with R(θ) = n−1
∑d
`=1

(
− log(σ) + (σ2 + µ2

`)/2− 1/2
)
.
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Bayesian LeNet-5 on MNIST

Figure 3: (Incremental Variational Inference) Negated ELBO versus epochs

elapsed for fitting the Bayesian LeNet-5 on MNIST using different algorithms.

The solid curve is obtained from averaging over 5 independent runs of the

methods, and the shaded area represents the standard deviation.
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2. Nonconvex Risk Minimization

2.2 Online Optimization of Nonconvex

Expected Risk: with Applications to

Online and Reinforcement Learning



Stochastic Approximation (SA) Scheme

• Consider a smooth Lyapunov function V : Rd → R ∪ {∞} (possibly

nonconvex) that we wish to find its stationary point.

• SA scheme (Robbins and Monro, 1951) is a stochastic process:

ηn+1 = ηn − γn+1Hηn
(Xn+1), n ∈ N

where ηn ∈ H ⊆ Rd is the nth state, γn > 0 is the step size.

• The drift term Hηn
(Xn+1) depends on an i.i.d. random element

Xn+1 and the mean-field satisfies

h(ηn) = E
[
Hηn

(Xn+1)|Fn

]
= ∇V (ηn),

where Fn is the filtration generated by {η0, {Xm}m≤n}.
• In this case, the SA scheme is better known as the SGD method.
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Biased SA Scheme

In this work, we relax a few restrictions of the classical SA. Consider:

ηn+1 = ηn − γn+1Hηn
(Xn+1), n ∈ N. (27)

• The mean field h(η) 6= ∇V (η)

=⇒ relevant to non-gradient method where the gradient is hard to

compute, e.g., online EM.

• {Xn}n≥1 is not i.i.d. and form a state-dependent Markov chain

=⇒ relevant to SGD with non-iid noise and policy gradient. E.g., ηn

controls the policy in a Markov decision process, and the gradient

estimate Hηn
(x) is computed from the intermediate reward.
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Biased SA Scheme

In this work, we relax a few restrictions of the classical SA. Consider:

ηn+1 = ηn − γn+1Hηn
(Xn+1), n ∈ N. (27)

• The mean field h(η) 6= ∇V (η) but satisfies for some c0 ≥ 0, c1 > 0,

c0 + c1 〈∇V (η) | h(η)〉 ≥ ‖h(η)‖2

• {Xn}n≥1 is not i.i.d. and form a state-dependent Markov chain:

E[Hηn
(Xn+1)|Fn] = Pηn

Hηn
(Xn) =

∫
Hηn

(x)Pηn
(Xn,dx),

where Pηn
: X×X → R+ is Markov kernel with a unique stationary

distribution πηn
, and the mean field h(η) =

∫
Hη(x)πη(dx).

29



Prior Work & Biased SA Scheme

We consider two cases depending on the noise sequence

en+1 = Hηn
(Xn+1)− h(ηn)

Case 1: When {en}n≥1 is Martingale difference —

E
[
en+1|Fn

]
= 0 and other conditions...

• Asymptotic Analysis: with smooth h(·) (Robbins and Monro, 1951),

(Benveniste et al., 1990), (Borkar, 2009).

• Non-asymptotic Analysis: focus on h(η) = ∇V (η),

• Convex case: rate of O(1/n) in (Moulines and Bach, 2011), biased

SA also studied in TD learning (Dalal et al., 2018).

• Nonconvex case: (Ghadimi and Lan, 2013), (Bottou et al., 2018)

studied convergence with martingale noise.
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Prior Work & Biased SA Scheme

We consider two cases depending on the noise sequence

en+1 = Hηn
(Xn+1)− h(ηn)

Case 2: When {en}n≥1 is state-controlled Markov noise —

E
[
en+1|Fn

]
= Pηn

Hηn
(Xn)− h(ηn) 6= 0 and other conditions....

• Asymptotic Analysis: studied with h(η) = ∇V (η) in (Kushner and

Yin, 2003), similar biased SA setting in (Tadić and Doucet, 2017).

• Non-asymptotic Analysis: not many work here...

• Sun et al. (2018) and Duchi et al. (2012) assumed h(η) = ∇V (η) &

state-independent Markov chain.

• Bhandari et al. (2018) studied a similar setting but focuses on linear

SA with convex Lyapunov function.
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Our Contributions

• First non-asymptotic analysis of biased SA scheme under the relaxed

settings for nonconvex Lyapunov function.

• For both cases, with N being a r.v. drawn from {1, ..., n}, we show

E[‖h(ηN)‖2] = O
(
c0 +

log n√
n

)
where c0 is the bias of the mean field. If unbiased, then we find a

stationary point.

• Analysis of two stochastic algorithms:

• Online expectation maximization in (Cappé and Moulines, 2009)

• Online policy gradient for infinite horizon reward maximization

(Baxter and Bartlett, 2001).

• We provide the first non-asymptotic rates for the above algorithms.
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General Assumptions

(A1) For all η ∈ H, there exists c0 ≥ 0, c1 > 0 such that

c0 + c1 〈∇V (η) | h(η)〉 ≥ ‖h(η)‖2

(A2) For all η ∈ H, there exists d0 ≥ 0, d1 > 0 such that

d0 + d1‖h(η)‖ ≥ ‖∇V (η)‖

(A3) Lyapunov function V is L-smooth. For all (η,η′) ∈ H2,

‖∇V (η)−∇V (η′)‖ ≤ L‖η − η′‖

• (A1), (A2) assume that the mean field h(η) is indirectly related to

the gradient of a Lyapunov function V (η) (h(η) 6= ∇V (η)).

• If c0 = d0 = 0, then the SA scheme is un-biased.

• (A3) is the standard smoothness assumption.
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Stopping Criterion

• We adopt a stopping rule similar to (Ghadimi and Lan, 2013) that is

typical for nonconvex problems.

• Fix any n ≥ 1 and let N ∈ {0, . . . , n} be a discrete random variable

(independent of {Fn, n ∈ N}) with

P(N = `) =
(∑n

k=0 γk+1

)−1
γ`+1 , (28)

where N serves as the terminating iteration for (27).

• Throughout this talk, we assume N is distributed as (28) and study

the estimator ηN .
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Case 1: Martingale Difference Noise

(A4) {en}n≥1 is a Martingale difference sequence such that

E [en+1 | Fn] = 0, E
[
‖en+1‖2

∣∣Fn

]
≤ σ2

0 + σ2
1‖h(ηn)‖2 for any n ∈ N.

Theorem 3

Let A1, A3 and A4 hold and γn+1 ≤ (2c1L(1 + σ2
1))−1 for all n ≥ 0.

Let V0,n := E[V (η0)− V (ηn+1)], we have

E[‖h(ηN)‖2] ≤
2c1

(
V0,n + σ2

0L
∑n

k=0 γ
2
k+1

)∑n
k=0 γk+1

+ 2c0 ,

If we set γk = (2c1L(1 + σ2
1)
√
k)−1, then the SA scheme (27) finds an

O(c0 + log n/
√
n) quasi-stationary point within n iterations.
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Case 1: Martingale Difference Noise

(A4) {en}n≥1 is a Martingale difference sequence such that

E [en+1 | Fn] = 0, E
[
‖en+1‖2

∣∣Fn

]
≤ σ2

0 + σ2
1‖h(ηn)‖2 for any n ∈ N.

=⇒ can be satisfied when Xn is i.i.d. similar to the SGD setting.

Theorem 3

Let A1, A3 and A4 hold and γn+1 ≤ (2c1L(1 + σ2
1))−1 for all n ≥ 0.

Let V0,n := E[V (η0)− V (ηn+1)], we have

E[‖h(ηN)‖2] ≤
2c1

(
V0,n + σ2

0L
∑n

k=0 γ
2
k+1

)∑n
k=0 γk+1

+ 2c0 ,

If we set γk = (2c1L(1 + σ2
1)
√
k)−1, then the SA scheme (27) finds an

O(c0 + log n/
√
n) quasi-stationary point within n iterations.

=⇒ if h(η) = ∇V (η) it recovers (Ghadimi and Lan, 2013, Theorem 2.1).
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Case 2: State-dependent Markov Noise

In this case, {en}n≥1 is not a Martingale sequence. Instead,

(A5) There exists a Borel measurable function Ĥ : H× X→ H,

Ĥη(x)− Pη Ĥη(x) = Hη(x)− h(η), ∀ η ∈ H, x ∈ X.

(A6) For all η ∈ H and x ∈ X, ‖Ĥη(x)‖ ≤ L
(0)
PH , ‖Pη Ĥη(x)‖ ≤ L

(0)
PH , and

supx∈X ‖Pη Ĥη(x)− Pη′Ĥη′(x)‖ ≤ L
(1)
PH‖η − η′‖, ∀ (η,η′) ∈ H2.

(A7) It holds that supη∈H,x∈X ‖Hη(x)− h(η)‖ ≤ σ.

• (A5) refers to the existence of solution to Poisson equation.

• (A6) requires smoothness of Ĥη(x) ⇐ satisfied if the Pη , Hη(X )

are smooth w.r.t. η + the Markov chain is geometrically ergodic.

• Remark: (A7) requires the update is uniformly bounded for all

x ∈ X. In fact, (A5)–(A7) can not imply (A4), nor vice versa.
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Case 2: State-dependent Markov Noise

Theorem 4

Let A1–A3, A5–A7 hold. Suppose that the step sizes satisfy

γn+1 ≤ γn, γn ≤ aγn+1, γn− γn+1 ≤ a′γ2
n , γ1 ≤ 0.5

(
c1(L+Ch)

)−1
,

for a, a′ > 0 and all n ≥ 0. Let V0,n := E[V (η0)− V (ηn+1)],

E[‖h(ηN)‖2] ≤
2c1

(
V0,n + C0,n +

(
σ2L + Cγ

)∑n
k=0 γ

2
k+1

)∑n
k=0 γk+1

+ 2c0 ,

• Ch :=
(
L

(1)
PH(d0 + d1

2 (a + 1) + ad1σ) + L
(0)
PH

(
L + d1{1 + a′}

))
.

• Cγ := L
(1)
PH(d0 + d0σ + d1σ) + LL

(0)
PH(1 + σ).

• C0,n := L
(0)
PH

(
(1 + d0)(γ1 − γn+1) + d0(γ1 + γn+1) + 2d1

)
.
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Case 2: State-dependent Markov Noise

Theorem 4

Let A1–A3, A5–A7 hold. Suppose that the step sizes satisfy

γn+1 ≤ γn, γn ≤ aγn+1, γn− γn+1 ≤ a′γ2
n , γ1 ≤ 0.5

(
c1(L+Ch)

)−1
,

for a, a′ > 0 and all n ≥ 0. Let V0,n := E[V (η0)− V (ηn+1)],

E[‖h(ηN)‖2] ≤
2c1

(
V0,n + C0,n +

(
σ2L + Cγ

)∑n
k=0 γ

2
k+1

)∑n
k=0 γk+1

+ 2c0 ,

• If γk = (2c1L(1 + Ch)
√
k)−1, then E[‖h(ηN)‖2] = O(c0 + log n/

√
n)

as in our case 1 with Martingale noise.

• Key idea to the proof is to use the Poisson equation assumption

(A5) [see Lemma 3], which is new to the SA analysis.
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Latent Data Model

• Goal: Consider a stream of i.i.d. observations {Yn}n≥1, Yn ∼ π and

fit a parametric family {g(y ;θ) : θ ∈ Θ} with θ ∈ Θ ⊂ Rd .

• Augment Y with latent variable Z ⇒ complete data: X = (Y ,Z ).

• Exponential Family Distribution: the complete data distribution:

f (x ;θ) = h(x) exp (〈S(x) |φ(θ)〉 − ψ(θ)) ,

where S : X→ S is the sufficient statistics and S ⊂ Rm. We have

g(y ;θ) =
∫

Z
f (x ;θ)µ(dz).
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Two Important Operations

• Expectation: Given θ ∈ Θ and an observation y , the conditional

expected sufficient statistics is

s(y ;θ) = Eθ [S(X ) |Y = y ]

• Maximization: Given a sufficient statistics s ∈ S, we can estimate

θ by maximizing the regularized log-likelihood

θ(s) := argmax
θ∈Θ

{
〈s |φ(θ)〉 − ψ(θ)− R(θ)

}
where R(θ) is a (strongly convex) regularization function.
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Regularized Online EM (ro-EM)

• As {Yn}n≥1 arrive in a streaming fashion, the ro-EM method

(modified from (Cappé and Moulines, 2009)) does:

E-step: ŝn+1 = ŝn + γn+1

{
s(Yn+1; θ̂n)− ŝn

}
,

M-step: θ̂n+1 = θ(ŝn+1).

• Let us interpret E-step as an SA update (27) with drift term

Hŝn(Yn+1) = ŝn − s(Yn+1;θ(ŝn)) ,

whose mean field is given by h(ŝn) = ŝn − Eπ
[
s(Yn+1;θ(ŝn))

]
• What should be the Lyapunov function? We use the KL divergence

V (s) := Eπ
[

log
π(Y )

g(Y ;θ(s))

]
+ R(θ(s)).
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Special Case: Gaussian Mixture Model

Goal: fit {Yn}n≥1 in an GMM with θ = ({ωm}M−1
m=1 , {µm}Mm=1). Consider:

g(y ;θ) ∝
(

1−
M−1∑
m=1

ωm

)
exp

(
− (y − µM)2

2

)
+

M−1∑
m=1

ωm exp

(
− (y − µm)2

2

)
,

and the regularizer (with ε > 0)

R(θ) = ε
∑M

m=1

{
µ2
m/2− log(ωm)

}
− ε log

(
1−

∑M−1
m=1 ωm

)
.

Consider the assumption:

• (A9) The samples Yn are i.i.d. and |Yn| ≤ Y for any n ≥ 0.

• It can be verified that if (A9) holds, then (A1), (A3), (A4) are

satisfied [cf. Proposition 3, 4].
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Convergence Analysis

Corollary 1

Under A9 and set γk = (2c1L(1 + σ2
1)
√
k)−1. The ro-EM method

for GMM finds ŝN such that

E[‖∇V (ŝN)‖2] = O(log n/
√
n)

The expectation is taken w.r.t. N and the observation law π.

• First explicit non-asymptotic rate given for online EM method.

• Note that rigorous convergence proof for global convergence of

(online) EM methods are rare.
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Policy Gradient: Markov Decision Process

• Consider a Markov Decision Process (MDP) (S,A,R,P):

• S is a finite set of spaces (state-space)

• A is a finite set of action (action-space)

• R : S× A→ [0,Rmax] is a reward function

• P is the transition model, i.e., given an action a ∈ A, Pa = {Pa
s,s′} is

a matrix, Pa
s,s′ is the probability of transiting from the sth state to

the s ′th state upon taking action a.

• {(St ,At)}t≥1 forms a Markov chain with the transition probability

from (s, a) to (s ′, a′) as:

Qη((s, a); (s ′, a′)) := Πη(a′; s ′) Pa
s,s′ .

• The parameter η controls the conditional probability of taking

action a′ given the state s ′.
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Policy Optimization Problem

• Goal: Find a policy η to maximize the average reward:

J(η) :=
∑

s∈S,a∈A υ(s, a) R(s, a) .

where υ(s, a) is the invariant distribution of {(St ,At)}t≥1.

• What is the gradient of J(η) w.r.t. η?

∇J(η) = limT→∞ Eη

[
R(ST ,AT )

∑T−1
i=0 ∇ log Πη(AT−i ;ST−i )

]
.

• REINFORCE algorithm (Williams, 1992) uses the sample average

approximation. Let M � 1,T � 1,

∇J(η) ≈ (1/M)
∑M

m=1

{
R(Sm

T ,A
m
T )
∑T−1

i=0 ∇ log Πη(Am
T−i ;S

m
T−i )

}
where (Sm

1 ,A
m
1 , . . . ,S

m
T ,A

m
T ) ∼ Πη are drawn from a roll-out for

each m =⇒ needs many samples and η to be static.
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Policy Optimization Problem

• Goal: Find a policy η to maximize the average reward:

J(η) :=
∑

s∈S,a∈A υ(s, a) R(s, a) .

where υ(s, a) is the invariant distribution of {(St ,At)}t≥1.

• What is the gradient of J(η) w.r.t. η?

∇J(η) = limT→∞ Eη

[
R(ST ,AT )

∑T−1
i=0 ∇ log Πη(AT−i ;ST−i )

]
.

• We use a biased estimate of ∇J(η). Let λ ∈ [0, 1) and T � 1, we

have (Baxter and Bartlett, 2001)

∇J(η) ≈ ∇̂T J(η) := R(ST ,AT )
T−1∑
i=0

λi ∇ log Πη(AT−i ;ST−i ),

where (S1,A1, . . . ,ST ,AT ) ∼ Πη.
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Online Policy Gradient (PG)

• We update the policy on-the-fly with an online policy gradient

update (Baxter and Bartlett, 2001; Tadić and Doucet, 2017):

Gn+1 = λGn +∇ log Πηn
(An+1;Sn+1) , (29a)

ηn+1 = ηn + γn+1Gn+1 R(Sn+1,An+1) . (29b)

• We can interpret (29b) as an SA step with the drift term:

Hηn
(Xn+1) = Gn+1 R(Sn+1,An+1)

• Let the joint state be Xn = (Sn,An,Gn) ∈ S× A× Rd . We observe

that {Xn}n≥1 also forms a Markov chain. In particular,

h(η) = lim
T→∞

EτT∼Πη, S1∼Πη

[
∇̂T J(η)

]
.
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Convergence Analysis

• Focus on an exponential family policy (or soft-max):

Πη(a; s) =
{∑

a′∈A exp
(
〈η | x(s, a′)− x(s, a)〉

)}−1
.

• (A10) For any s ∈ S, we have ‖x(s, a)‖ ≤ b.

• (A11) For any η ∈ H, {St ,At}t≥1 is geometrically ergodic with

‖Qn
η − 1(υη)>‖ ≤ ρnKR . The invariant distribution υη and its

Jacobian Jηυη
(η) are Lipschitz continuous

‖υη − υη′‖ ≤ LQ‖η − η′‖, ‖ Jηυη
(η)− Jηυη

(η′)‖ ≤ Lυ‖η − η′‖.

• Under (A10), (A11), the function J(η) is Rmax |S||A|-smooth,

(1− λ)2Γ2 + 2 〈∇J(η) | h(η)〉 ≥ ‖h(η)‖2,

where Γ := 2b Rmax KR
1

(1−ρ)2 . Other required assumptions are

satisfied too [cf. Proposition 5-7].
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Convergence Analysis (cont’d)

Corollary 2

Under A10, A11 and set γk = (2c1L(1 + Ch)
√
k)−1. For any n ∈ N,

the policy gradient algorithm (29) finds a policy that

E
[
‖∇J(ηN)‖2

]
= O

(
(1− λ)2Γ2 + c(λ) log n/

√
n
)
, (30)

where c(λ) = O( 1
1−λ ). Expectation is taken w.r.t. N and (An,Sn).

• It shows the first convergence rate for the online PG method.

• Our result shows the variance-bias trade-off with λ ∈ (0, 1).

• While setting λ→ 1 reduces the bias, but it decreases the

convergence rate with c(λ).
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Sketches of Proofs

To simplify the notations next, we assume that c0 = 0, c1 = 1 and apply

the following bound

Lemma 1. Let A1, A3 hold. With appropriate step size, it holds:∑n
k=0(γk+1/2)‖h(ηk)‖2

≤ V (η0)− V (ηn+1) + L
∑n+1

k=1 γ
2
k‖ek‖2 −

∑n+1
k=1 γk

〈
∇V (ηk+1) | ek

〉
.

• Case 1: {en}n≥1 is Martingale =⇒ E[
〈
∇V (ηk+1) | ek

〉
|Fk ] = 0,

taking the total expectation on both sides of the lemma suffices.

• Case 2: {en}n≥1 isn’t Martingale =⇒ E[
〈
∇V (ηk+1) | ek

〉
|Fk ] 6= 0.

• In the latter case, we control the sum E[
∑n+1

k=1 γk
〈
∇V (ηk+1) | ek

〉
]

using the Poisson’s equation.
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Consider the following bound

Lemma 2. Let A1–A3, A5–A7 hold. With appropriate step size, it holds:

E
[
−
∑n

k=0 γk+1 〈∇V (ηk) | ek+1〉
]

≤ Ch

∑n
k=0 γ

2
k+1E[‖h(ηk)‖2] + Cγ

∑n
k=0 γ

2
k+1 + C0,n,

• Proof Idea: note that ek+1 = Hηk
(Xk+1)− h(ηk), using (A5), we

have the decomposition∑n
k=0

〈
∇V (ηk ) | Ĥηk

(Xk+1)− Pηk
Ĥηk

(Xk+1)
〉
≡ A1 + A2 + A3 + A4 + A5

A1 =
∑n

k=1

〈
∇V (ηk ) | Ĥηk

(Xk+1)− Pηk
Ĥηk

(Xk )
〉

A2 =
∑n

k=1

〈
∇V (ηk ) |Pηk

Ĥηk
(Xk )− Pηk−1

Ĥηk−1
(Xk )

〉
A3 =

∑n
k=1

〈
∇V (ηk )−∇V (ηk−1) |Pηk−1

Ĥηk−1
(Xk )

〉
A4 =

∑n
k=1

〈
∇V (ηk ) |Pηk−1

Ĥηk−1
(Xk )

〉
A5 = γ1

〈
∇V (η0) | Ĥη0

(X1)
〉
− γn+1

〈
∇V (ηn) |Pηn

Ĥηn
(Xn+1)

〉
• We can bound A1 by observing that the inner product is a

Martingale, bound A2 using (A6), (A7), etc..
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3. Conclusion



Take-aways

• We derived incremental and online methods for the optimization

problem in machine learning.

• For either ERM or Expected risk problems

• When the objective function is a likelihood or not

• For latent data models

• We conducted finite-time analysis of these methods for nonconvex

loss functions and non necessarily gradient methods.

• Applications to several models of interest in machine learning with

rigorous verification of the assumptions.
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Perspectives

• Incremental algorithms: choice of the indices at each iteration.

Optimal sampling strategies: (Roux et al., 2012) or (Horváth and

Richtárik, 2018).

• Optimal mini-batch size of stochastic and incremental algorithms.

See (Gower et al., 2019) (variance-cost trade off).

• Interplay between the Monte Carlo batch and the mini-batch of

indices drawn at each iteration (bias-variance trade off).

• Complexity of O(n/ε) was found for the MISO method. O(n2/3/ε)

for quadratic surrogates in (Qian et al., 2019).

• Storage and Computation:

• When data is big, need to store a lot for SAG, SAGA (less for SVRG).

• Distributed first-order optimization procedures. Parallel or

asynchronous method, or even centralized or decentralized

architecture.

51



Thank you! Questions?
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