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Stochastic Approximation

e Objective: Find a stafionary point of ssmnooth Lyapunov function V(n).

e SA scheme (Robbins and Monro, 1951) is a stochastic process:

"h+1 = Nn — 'Yn+1Hnn(Xn+1), neN (D

where n, € # C R% is the nth state, v, > 0 is the step size.

e The driff ferm Hy (X,41) depends on an i.i.d. random element X, ; and

h(n, =E :Hnn(XnJrl)u:n} = VV(n,),

where F, = o(ng. { Xm}m<n). INn this case, SA is befter known as the SGD method.

\.

Biased SA Scheme

e The mean field is biased < gradient is sometimes difficult fo compute...

We have h(n) # VV(n) and for some ¢y > 0, ¢c; > 0,

co+ci (VV(n)[h(n)) > [h(m)]* VneH

o The drift term {H, (X,11)},>1 Is not i.i.d.. For example, in reinforcement learning,
nn controls the policy in a MDP & Hy, (X,4+1) is computed from the MDP’s state.

The random elements { X,},>1 form a state-dependent Markov chain:
E[Hnn(XnJrl)lj:n] — 'Dnann(Xn) — f Hnn(X)Pnn(Xn' dx),

where £, : X x X — R4 is Markov kernel with a unique stationary distrioution 7, .
e In the latfter case, the mean field is given by h(n) = [ Hy(x)my(dx).

e Stopping criterion: fix any n > 1, we stop the SA at a random iteration N with

P(N =0) = (Yj_gVes1) Ve, With N e {1, n}.

e We focus on the non-asymptotic convergence analysis of SA scheme, where the
relevant results are rare. Define:

€nt1 -— Hnn(Xn+1) — h(nn) (2)

Case 1: When {e;},>; is Martingale difference — E[e,1|F5] =0

e Asymptotic analysis: (Robbins and Monro, 1951); Non-asymypfotfic analysis: (Ghadimi
and Lan, 2013).

Case 2: When {e;} > is state-controlled Markov noise

Eleq1|Fn] = Pnann(Xn) — h(n,) # 0.

e Asymptotic analysis: (Tadi¢ and Doucet, 2017); Non-asymypftotfic analysis: (Sun et al.,
2018), (Duchi et al., 2012), (Bhandari et al., 2018)

Analysis For State-dependent Markov Noise (Case 2)
Assumptions: we need a few regularity conditions in this case,
1. There exists a Borel measurable function H : H x X — H,

/—A/n(x) — Pn/:/n(x) = Hyp(x) —h(n), Vn e H,xeX

— existence of solution to the Poisson equafion.
2.Foralln € H and x € X, [|Ay()| < L9 1P, Ap()ll < L9, and

A A 1
sUpex 1Py (x) = Py Ay GOl < LIl =0l ¥ (. m') € H2.

—> smoothness of Hy(x). satisfied if P, Hy(X) are smooth w.r.t. 7.
3. It holds that supyey xex [|Hn(x) — h(n)|| < o.

— requires the noise is uniformly bounded for all x € X,

Example: assumptions 1 & 2 are safisfied if the Markov kernel P,%7 IS geometrically
ergodic + smooth, and the drift term is smooth w.r.t. n.

Theorem 2. Suppose that the step sizes are decreasing and v, < 0.5(¢1(L + Cp)) !
(+other conditions). Let Vg p :=E[V(ng) — V(np11)].

2Cy (\/On =+ CO,n T (O-QL + C’Y) ZZ:O ,Y/%—Fl)
ZZZO Yk+1

o Set vy, = (2ciL(1 + C)VK) ™t = E[||h(npy)|I7] = O(cy + log n/+/n) (same as Case 1).

e Proof idea: challenge is that e,.; IS not zero-mean — bound the sum of
E[(VV(nn)|enr1)] W/ Poisson equation + a novel decomposition (cf. Lemma 2).

B[l A(nw)[17] < 20 .

Analysis For Martingale Difference Noise (Case 1)

Assumption: E[e, 1| F] = 0. E [|lep1]1?| Fn] < 05 + o]|h(nn)|?. (e.g.. when X, is
[.I.d. similar to the SGD setting).

Theorem 1. Let v, 1 < (21 L(1 + 0%))_1 and Vg , = E[V(ng) — V(np11)].

2¢ (VO.H + o5l ZZ:O ’Y/%Jrl)
ZZ:O Yk+1
Set v, = (2c1L(1 + 02)Vk)~t = E[||h(nn)|I?] = O(cq + logn/+/n). Remark: if h(n) =

E[[| A(nw)[17] < -2¢

VV(n) (with ¢g = dy = 0), it recovers (Ghadimi and Lan, 2013, Theorem 2. 1).

Regularized Online EM Algorithm

e Special Case of GMM: we fit the data {Y,},>1. Y» ~ 7 info the parametric model
with 6 = ({wm} y=1 {em}i_y)

g(y: 0) x (1 - yh] wm) exp (—(y_S’M)Q) + M L exp (—(y_ﬁ“”)z) ,

e Data arrives in a streaming fashion, Cappé and Moulines (2009) does:

E—STep: Sp+1 = Sp+ 'Yn+1{§(yn+1; én) o §”}’
M-step: 6,1 = 0(8,.1).

e The E-step is a biased SA step on s with the drift term & mean field

Hs,(Yoi1) = 80— 8(Yoi1:0(3,)),  h(8,) = 8, — Er [8(Yai1: 0(8,))]

Analysis of the ro-EM Algorithm (Application of Case 1)

Consider the KL divergence as a function of sufficient stafistics s:

V(s) = KL(m|g(; 8(s))) + R(8(s)) = Ex|log (m(Y)/g(Y:0(s)))] + R(6(s)).

Corollary 1. Set v, = (2¢1L(1 + 02)vVk)~t. Ro-EM method for GMM finds 8 such
that

E[[[VV(8w)[I°] = O(log n/+/n)

The expectation is tfaken w.r.t. N and the observation law .

e First explicit non-asymptofic rate given for online EM method.

e Consider a slightly modified/regularized M-step update for satisfaction of the
tfechnical conditions.

32nd Annual Conference on Learning Theory, Phoenix, AZ

Non-asymptotic Analysis of Biased Stochastic Approximation Scheme

ECOLE 4 e
POLYTECHNIQUE LA

UNMIVERSITE PARIS-SACLAY INVENTEURS DU MONDE NUMERIQUE

(Online) Policy Gradient Method

e Consider a Markov Decision Process (MDP) (S, A, R, P):

-S, Ais the finite set of stafte/action.
-R:S x A — |0, Rmax] Is a reward function; P is the fransition model.

e A policy is parameterized by 1 € R? as (e.g., soft-max):
My(a’; s") = probability of taking action &’ in state s’

e Update n in an online fashion (Tadi€ and Doucet, 2017) using observed state-
action pair:
Gpy1 = MG, + Viog Ty, (Ant1; Sns1)
Mn+1 = Tn T+ rYn+1Gn+1 R(Sn+11 An+1)

where X € (0, 1) is a parameter for the variance-bias frade-off.

e The n-update is an biased SA step with the drift term:
Hnn(Xn+1) = Gp11 R(5n+1, An+1)

Analysis of Policy Gradient Method (Application of Case 2)

Let vy (s, a) be the invariant distrioution of {(St, A¢)}t>1. we consider:

JM) = 2 ecs 2caUn(s. a)R(s, a) .

Corollary 2. Set v, = (2¢;L(1 + C,)Vk)~L. For any n € N, the policy gradient algo-
rithm (3) finds a policy that

E[|VJ(nu)lI”] = O((1 = AT+ c(V)log n/ V),

where c(\) = O(ﬁ). Expectation is tfaken w.r.t. N and (An, Sp).

e [t shows the first convergence rafe for the online PG method.
e Our result shows the variance-bias trade-off with X € (0, 1).
e Seffing A — 1 reduces the bias, but decreases the convergence speed.

Conclusion

e Theorem 1 & 2 show the non-asymptotic convergence rate of biased SA scheme
with smooth (possibly non-convex) Lyapunov function.

e With appropriate step size, in n iterations the SA scheme finds E[||h(ny)||?] =
O(cy + logn/+/n), where ¢ is the bias and h(-) is the mean field.

e Applications to online EM and online policy gradient.
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