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Stochastic Approximation
• Objective: Find a stationary point of smooth Lyapunov function V (η).

• SA scheme (Robbins and Monro, 1951) is a stochastic process:

ηn+1 = ηn − γn+1Hηn(Xn+1), n ∈ N (1)

where ηn ∈ H ⊆ Rd is the nth state, γn > 0 is the step size.

• The drift term Hηn(Xn+1) depends on an i.i.d. random element Xn+1 and

h(ηn) = E
[
Hηn(Xn+1)|Fn

]
= ∇V (ηn),

where Fn = σ(η0, {Xm}m≤n). In this case, SA is better known as the SGD method.

Biased SA Scheme
• The mean field is biased⇐ gradient is sometimes difficult to compute...

We have h(η) 6= ∇V (η) and for some c0 ≥ 0, c1 > 0,

c0 + c1 〈∇V (η) | h(η)〉 ≥ ‖h(η)‖2, ∀ η ∈ H

• The drift term {Hηn(Xn+1)}n≥1 is not i.i.d.. For example, in reinforcement learning,
ηn controls the policy in a MDP & Hηn(Xn+1) is computed from the MDP’s state.

The random elements {Xn}n≥1 form a state-dependent Markov chain:

E[Hηn(Xn+1)|Fn] = PηnHηn(Xn) =
∫
Hηn(x)Pηn(Xn, dx),

where Pηn : X×X → R+ is Markov kernel with a unique stationary distribution πηn.

• In the latter case, the mean field is given by h(η) =
∫
Hη(x)πη(dx).

• Stopping criterion: fix any n ≥ 1, we stop the SA at a random iteration N with

P(N = `) =
(∑n

k=0 γk+1

)−1
γ`+1, with N ∈ {1, ..., n}.

Prior Work
• We focus on the non-asymptotic convergence analysis of SA scheme, where the

relevant results are rare. Define:

en+1 := Hηn(Xn+1)− h(ηn) (2)
Case 1: When {en}n≥1 is Martingale difference — E[en+1|Fn] = 0

• Asymptotic analysis: (Robbins and Monro, 1951); Non-asymptotic analysis: (Ghadimi
and Lan, 2013).

Case 2: When {en}n≥1 is state-controlled Markov noise

E[en+1|Fn] = PηnHηn(Xn)− h(ηn) 6= 0.

• Asymptotic analysis: (Tadić and Doucet, 2017); Non-asymptotic analysis: (Sun et al.,
2018), (Duchi et al., 2012), (Bhandari et al., 2018)

Analysis For Martingale Difference Noise (Case 1)
Assumption: E [en+1 | Fn] = 0, E

[
‖en+1‖2

∣∣Fn] ≤ σ2
0 + σ2

1‖h(ηn)‖2. (e.g., when Xn is
i.i.d. similar to the SGD setting).

Theorem 1. Let γn+1 ≤ (2c1L(1 + σ2
1))−1 and V0,n := E[V (η0)− V (ηn+1)],

E[‖h(ηN)‖2] ≤
2c1

(
V0,n + σ2

0L
∑n

k=0 γ
2
k+1

)∑n
k=0 γk+1

+ 2c0 ,

Set γk = (2c1L(1 + σ2
1)
√
k)−1 =⇒ E[‖h(ηN)‖2] = O(c0 + log n/

√
n). Remark : if h(η) =

∇V (η) (with c0 = d0 = 0), it recovers (Ghadimi and Lan, 2013, Theorem 2.1).

Analysis For State-dependent Markov Noise (Case 2)
Assumptions: we need a few regularity conditions in this case,

1. There exists a Borel measurable function Ĥ : H× X→ H,

Ĥη(x)− PηĤη(x) = Hη(x)− h(η), ∀ η ∈ H, x ∈ X.

=⇒ existence of solution to the Poisson equation.

2. For all η ∈ H and x ∈ X, ‖Ĥη(x)‖ ≤ L(0)
PH, ‖PηĤη(x)‖ ≤ L(0)

PH, and

supx∈X ‖PηĤη(x)− Pη′Ĥη′(x)‖ ≤ L(1)
PH‖η − η

′‖, ∀ (η,η′) ∈ H2.

=⇒ smoothness of Ĥη(x), satisfied if Pη, Hη(X) are smooth w.r.t. η.

3. It holds that supη∈H,x∈X ‖Hη(x)− h(η)‖ ≤ σ.

=⇒ requires the noise is uniformly bounded for all x ∈ X.

Example: assumptions 1 & 2 are satisfied if the Markov kernel Pηη is geometrically
ergodic + smooth, and the drift term is smooth w.r.t. η.

Theorem 2. Suppose that the step sizes are decreasing and γ1 ≤ 0.5
(
c1(L + Ch)

)−1

(+other conditions). Let V0,n := E[V (η0)− V (ηn+1)],

E[‖h(ηN)‖2] ≤
2c1

(
V0,n + C0,n +

(
σ2L+ Cγ

)∑n
k=0 γ

2
k+1

)∑n
k=0 γk+1

+ 2c0 .

• Set γk = (2c1L(1 + Ch)
√
k)−1 =⇒ E[‖h(ηN)‖2] = O(c0 + log n/

√
n) (same as Case 1).

• Proof idea: challenge is that en+1 is not zero-mean =⇒ bound the sum of
E[〈∇V (ηn) | en+1〉] w/ Poisson equation + a novel decomposition [cf. Lemma 2].

Regularized Online EM Algorithm
• Special Case of GMM: we fit the data {Yn}n≥1, Yn ∼ π into the parametric model

with θ = ({ωm}M−1
m=1 , {µm}

M
m=1)

g(y ;θ) ∝
(

1−
∑M−1
m=1 ωm

)
exp
(
−(y−µM)2

2

)
+
∑M−1
m=1 ωm exp

(
−(y−µm)2

2

)
,

• Data arrives in a streaming fashion, Cappé and Moulines (2009) does:

E-step: ŝn+1 = ŝn + γn+1

{
s(Yn+1; θ̂n)− ŝn

}
,

M-step: θ̂n+1 = θ(ŝn+1).

• The E-step is a biased SA step on s with the drift term & mean field

Hŝn(Yn+1) = ŝn − s(Yn+1;θ(ŝn)), h(ŝn) = ŝn − Eπ
[
s(Yn+1;θ(ŝn))

]
Analysis of the ro-EM Algorithm (Application of Case 1)
Consider the KL divergence as a function of sufficient statistics s:

V (s) := KL(π|g(·;θ(s))) + R(θ(s)) = Eπ
[

log
(
π(Y )/g(Y ;θ(s))

)]
+ R(θ(s)).

Corollary 1. Set γk = (2c1L(1 + σ2
1)
√
k)−1. Ro-EM method for GMM finds ŝN such

that
E[‖∇V (ŝN)‖2] = O(log n/

√
n)

The expectation is taken w.r.t. N and the observation law π.

• First explicit non-asymptotic rate given for online EM method.

• Consider a slightly modified/regularized M-step update for satisfaction of the
technical conditions.

(Online) Policy Gradient Method
• Consider a Markov Decision Process (MDP) (S,A,R,P):

– S, A is the finite set of state/action.
– R : S× A→ [0,Rmax] is a reward function; P is the transition model.

• A policy is parameterized by η ∈ Rd as (e.g., soft-max):

Πη(a′; s ′) = probability of taking action a′ in state s ′

• Update η in an online fashion (Tadić and Doucet, 2017) using observed state-
action pair:

Gn+1 = λGn +∇ log Πηn(An+1;Sn+1) ,

ηn+1 = ηn + γn+1Gn+1 R(Sn+1, An+1)

where λ ∈ (0, 1) is a parameter for the variance-bias trade-off.

• The η-update is an biased SA step with the drift term:

Hηn(Xn+1) = Gn+1 R(Sn+1, An+1)

Analysis of Policy Gradient Method (Application of Case 2)
Let υη(s, a) be the invariant distribution of {(St, At)}t≥1, we consider:

J(η) :=
∑

s∈S,a∈A υη(s, a) R(s, a) .

Corollary 2. Set γk = (2c1L(1 + Ch)
√
k)−1. For any n ∈ N, the policy gradient algo-

rithm (3) finds a policy that

E
[
‖∇J(ηN)‖2

]
= O

(
(1− λ)2Γ2 + c(λ) log n/

√
n
)
,

where c(λ) = O( 1
1−λ). Expectation is taken w.r.t. N and (An, Sn).

• It shows the first convergence rate for the online PG method.

• Our result shows the variance-bias trade-off with λ ∈ (0, 1).

• Setting λ→ 1 reduces the bias, but decreases the convergence speed.

Conclusion
• Theorem 1 & 2 show the non-asymptotic convergence rate of biased SA scheme

with smooth (possibly non-convex) Lyapunov function.

• With appropriate step size, in n iterations the SA scheme finds E[‖h(ηN)‖2] =
O(c0 + log n/

√
n), where c0 is the bias and h(·) is the mean field.

• Applications to online EM and online policy gradient.
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