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Large-scale machine learning
Constrained Minimization of large sum of functions
We are interested in the minimization of a large finite-sum of functions:

min lf(e) > f,-(e)] (1)

e P

where © is a convex subset of RP, for all i € [N], f; : R — R are
continuously differentiable, bounded from below and possibly
nonconvex.
Some examples Given data points (x;, i € [N]) and observations
(vi» i € [NT)

e Maximum likelihood estimation: () 2 — 3 log pi(y:, 0)

e Variational inference: f(0) £ Zf\lzl KL ( gi(w; 0)|| pi(w]yi, xi))

o Logistic regression: () 2 YN log(1 4 e ¥<0>)



Majorization-Minimization principle
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Figure 1: MM principle. Plot from [Mairal, 2015]

e |teratively minimize locally tight upper bounds on the objective

e Drives the objective function downards

e Examples: the proximal gradient algorithm (Beck and Teboulle,
2009), the EM algorithm (McLachlan and Krishnan, 2007) and
variational inference (Wainwright and Jordan, 2008).



Notations and Assumptions

Constrained optimization: © convex subset of R?. And 7(©)
neighborhood of ©.

For all i € [N], f; is continuously differentiable on 7(©).

For all i € [N], f; is bounded from below, i.e. there exist a constant
M; € R such as for all 8 € ©, £;(0) > M;.

fio : RP — R is a surrogate of f; at § if the following properties are
satisfied:

1. the function 9 — f; (1) is continuously differentiable on 7(O)
2. forall ¥ € ©, fig(9) > £(D) , £.0(0) = £(6) and
Vho(®)| = V)|

A sequence (6%)>o satisfies the asymptotic stationary point

condition if (VF(4). 0 0%)
\v4 —
— 00
R e, ° )



Incremental Surrogate Minimization

The incremental scheme of (Mairal, 2015) computes surrogate functions,
at each iteration of the algorithm, for a mini-batch of components:

Algorithm 1 MISO algorithm

Initialization: given an initial parameter estimate 6°, for all i € [N]

compute a surrogate function ¥ — f; go(19).
Iteration k: given the current estimate #%1:
1. Pick a set lx uniformly on {A C [N],card(A) = p}
2. Forall i € Iy compute ¥ — f; ge—1(19), a surrogate of f; at 6 1.
3. Set 6% € arg Lpeig SN | ak(1) where a¥(¥9) are defined recursively as

follows:

(o) & {f,-,gm(ﬂ) if i€ ly )

a-
' a 1)  otherwise




Intractable surrogate functions

In many cases of interest those surrogates are intractable.

Denote by z = (z; € Z;,i € [N]) € Z where Z = X:V:l Z; where Z;
is a subset of R™ as set of latent variables.

For all i € [N], let u; be a o-finite measure on the Borel o-algebra
Z; = B(Z)).

Pi; = {pi(z,0);0 € ©} be a family of probability densities with
respect to p;, and rjg : Zj x © = R be functions such that:

fi o(V) = / ri.0(zi, 0)pi(zi, O)pi(dz) for all (6,9) € 02, (4)

i

The surrogate function denoted f; 9(1) is fully defined by the pair
(ri0(2i,9), pi(z:,0)).



Examples of intractable surrogates

Incremental EM algorithm

e In the missing data context, let ¢;(z;,0) be the joint likelihood of the
observations and the latent data referred to as the complete
likelihood.

o gi(0) 2 fz,. ¢i(zi,0)pi(dz) is the likelihood of the observations (in
which the latent variables are marginalized).

The incremental EM algorithm falls into the incremental MM framework:

e For i € [N] and @ € © the loss function () = — log g;()
e for ¢ € © the surrogate function f; g(¢#), introduced in the
pioneering paper (Neal and Hinton, 1998), is defined by

fa0) £ [ g 220 Os(dz) = KL (a1 ) | p;(z,-,ﬁ))(;‘,-(ﬂ)

i

In most cases, this surrogate is intractable.



Examples of intractable surrogates

Variational Inference

o Let x = (x;,i € [N]) and y = (y;,i € [N]) be i.i.d. input-output
pairs and w be a global latent variable taking values in W a subset
of RY.

e A natural decomposition of the joint distribution is:

N
ply,x, w) = p(w) [ ] pi(yilx:, w) (6)
i=1

e The variational inference problem boils down to minimizing the
following KL divergence:

0" = argminKL(q(w: 0) || p(wly,x)) = argmin £(6)  (7)
where for all 6 € ©, f(8) = X2, £(6) with :

7(6) £ — | alwi6) 10g piyi xlw)dw + 3 KL(a(wi6) | p(w)
(8)



Examples of intractable surrogates

Variational Inference

e Does not scale to large data since evaluating the reconstruction term
in (8) requires calculations over the entire dataset.

e Optimization using the incremental framework from (Mairal, 2013)
as in (Hoffman et al., 2013; Titsias and Lazaro-Gredilla, 2014;
Kucukelbir et al., 2017; Kingma and Welling, 2013).

e Quadratic surrogate at 0 € ©:

fio(V) = ff(9)+Vﬁ'(9)T(19—9)+él\ﬂ—ﬂllﬁ (9)

)

where || - ||2 is the £>-norm and L is an upper bound of the spectral
norm of the Hessian of f; at 6.

The reconstruction integral term can not be calculated in complex
models such as Bayesian neural networks (Neal, 2012; Gal, 2016).



MISSO: Stochastic incremental scheme

We propose an incremental stochastic surrogate scheme called MISSO
(Minimization by Incremental Stochastic Surrogate Optimization):

e For i € [N], fi4(¥9) is a Monte Carlo approximation of f; 4(1):

~

M—-1
£ o(9) 2 % S ro(z",9) forall (6,9)€©®  (10)
m=0

o {z"}M-1is a Monte Carlo batch.
e In many cases, sampling from p;(z;, 0) is not an option.

e Sampled by Monte Carlo Markov Chain (MCMC) algorithm.

10



MISSQO: Stochastic incremental scheme

Algorithm

Algorithm 2 MISSO algorithm
Initialization: given an initial parameter estimate ¢°, for all i € [N]
compute the function ¢ — ﬁgo(ﬁ) defined by (10).
Iteration k: given the current estimate 9%

1. Pick a set lx uniformly on {A C [N], card(A) = p}

2. For all i € I, sample a Monte Carlo batch {z/*"}M< 1 from

pi(ziv gkil)-
3. For all i € Iy, compute the function ¥ — f; g«—1(19) defined by (10).

i

4. Set 0 € arg 1r911ei8 SN | 85(9) where 5(1)) are defined recursively as

follows:

! A,

31(W)  otherwise

) 2 {ﬁ-,gkl(ﬁ) ifiely (1)
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MISSQO: Stochastic incremental scheme

Need to control the supremum norm of the fluctuations of the Monte
Carlo approximation.

Let i € [N], {)i(zi,9),zi € Z;,9 € ©} be a family of measurable
functions, A; a probability measure on Z; x Z;.

We define:
{J: z »19)—/iji(ziyﬁ)Pi(Ziy9))\,'(012;)}”

(12)

M-1

VISC]

Gi) = SUPE,e lsup
=0

E; ¢ the expectation of the Markov chain {z}5°_, with transition kernel
Pi ¢ and stationary distribution p;(z;,8) - A;

In most examples, the Markov kernel P; g is derived from an MCMC
algorithm.
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MISSO: Main Result

Assumptions:
e Forie [[N]], lim C,'(r,')g) < oo and lim C,'(Vr,"g) < 00.
k—o0 k—o0

o {My}k>0 is a non deacreasing sequence of integers which satisfies
S M—1/2
Yoo M < 0.

Theorem: Asymptotic results

Given the assumptions above. Let (0")k>1 be a sequence generated
from 6° € © by the iterative application described by Algorithm 2.
Then:

e (f(0%)),, converges almost surely.

. (Gk)kZI satisfies the Asymptotic Stationary Point Condition.
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Application to EM algorithm

With our notations, we define the Monte Carlo approximation of the
intractable surrogate as:

M—1

7 A 1 pi(zim79) . 2

fro() = 4 mz;; |ogm for all i € [N] and (6,9) € ©2. (13)
where {z"}M~1 is a Monte Carlo batch sampled from p;(z;, ) using an

MCMC procedure.

The MISSO algorithm yields, at iteration k, the following update of the
parameter:

N Mﬂ'k_l
. 1 - i 1,m
0k ¢ - log ci(z/* 0™ v 14
arg min ;:0 o mE:o og ci(z; ) (14)

Tiktl,myM—1

where {z; m—o is @ Monte Carlo batch sampled from p;(z;, 07F)

and 7 = k —1if i € I, and 7 x_1 otherwise.
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Application to Variational Inference

e Recall, the intractable surrogate:
L
fro(9) 2 £(0) + VE@O) (9 —0) + §|\19—9||§ (15)

e Reparametrization trick suggested in (Kingma and Welling, 2013;
Blundell et al., 2015). For § € © and e € RY, W = t(6, e) where
e ~ Ny(0,1d) has a density g(-,6). (Blundell et al., 2015,
Proposition 1):

V [ togpitxlwha(w. O)dw = [ J(0.€)7 lok (v 1(0,€))o(e)de

where J(0, e) is the Jacobian of the function t(-, e).
o Setting 0¥ = LSV g7k — 4N | Ak where M are defined

recursively as follows:

m=0
Mkt il

(16) 15

{—lzwlxaﬁwww%mmxmwﬁmm+Vﬂm4)feu



Numerical Application:Training a BNN

e 2-layer Bayesian neural network on the MNIST dataset (LeCun and
Cortes, 2010)

e N = 60000 handwritten digits, 28 x 28 images, d = 784

e input layer with d = 784 units

e a single hidden layer of p = 100 hyperbolic tangent units

e softmax output layer with K = 10 classes.

e p(w) = N(0,Id), p(yi|xi, w) = Softmax(f(x;, w)) where f is the
two layers model.

e Variational distribution for layier j: q(w;,0;) is a multivariate
Gaussian distribution A(p;, 07 Id)

16



Numerical Application:Training a BNN

e Comparison with state-of-the-art optimizers: SAG, ADAM,
Momentum and SGD.

e 2 batch sizes: 1% and 10%

e Constant learning rate of 107>

—— ADAM 1% —— MISSO 1% 1400 —— ADAM 10% —— MISSO 10%
12001 |

| *— SGD 1% —— Momentum 1% | 1590 SGD 10% —— Momentum 10%
1000 \

~— SAG 10%

—— SAG 1%

Negated ELBO
®
8
3
5
8
8

Figure 2: (Incremental Variational Inference) Convergence of the negated

ELBO for 40 epochs over the training set. Runs for two different mini-batch
sizes (1% left and 10% right).
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Conclusion

e Unifying framework for minimization by incremental surrogate
optimization with MC approximation of the surrogates.

e Covers a large class of nonconvex optimization algorithms used in
machine learning.

e The incremental approach reduces significantly the variance. (see
SAG, MISO)

Future works include:

e Non asymptotic convergence results for both convex and nonconvex
objective functions
e Fixed Monte Carlo batch size convergence guarantees

B.K. and E. Moulines, MISSO: Minimization by Incremental Stochastic
Surrogate for large-scale nonconvex Optimization, 2018

B.K., M. Lavielle and E. Moulines, On the Convergence Properties of the
Mini-Batch EM and MCEM algorithms, 2018
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Thank you!
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Logistic Regression

y = (vi, i € [N]) vector of binary responses and z; = (z; ,) € RP
vector latent data independent and marginally distributed according
to NV(8,Q)

Model defined by

logit(P(y; = 0|z)) = d,-;-rz,-
Model belongs to the curved exponential family. Sufficient statistics
are g;(z,-) £ (z;,z! ).
MISSO algorithm consists in picking a set /¢, sampling a Monte
Carlo batch {z,-k’m}f\n/lkzgl for i € I and computing the quantities

(s,-l’k7 siz’k) as follows:
Mi—1 _k, Mi—1 _k, 3 .
oo goiy _ [ (B S S ) i
C (771 s otherwise
(17)

Then g% = %Z:Nﬂ 5i17k and Q% = %Z,N:l 512’k —(B*) T B*
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Logistic Regression

Data generating values:

(B

p =3, N =1200 and for all i € [N], n; = 15.
d,'j71 =1, d,‘jjg =-20+ (_/ — 1) *5 and d,‘j,3 = 10[3i//\”.

[ ] Mk £ M0+k2 with MO = 50.

—4, 62 = —0.5, 53 = 1,(4)1 = 0.3,(4}2 = 0.2,&)3 = 02)

-0.30

-035

-0.45

-0.50

. —0.40 {1
&

— 100% — 35%
85% — 25%
— 50%

) 200 400 600 800 1000 1200
Epoch

) 200 400 600 800 1000 1200
Epoch

0 200 400 600 800 1000 1200

Figure 3: (Incremental MCEM) Convergence of the vector of fixed parameters

[ for different batch sizes function of passes over the data.
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