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Abstract

The following report is exploring all my areas of interests during my
visit at the Probabilistic Computing Lab http://probcomp.csail.mit.

edu at MIT, Brain and Cognitive Science Department.
I would like to thank Vikash Mansighka for his supervision throughout
the visit. He allowed me to tackle several issues towards the field and
developed several skill sets I needed to pursue a career in Technological
fields.
I would like to thank the engineering team for its support on the tools
and softwares and the research team for the multiple discussions that led
to amazing results.
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1 Introduction

My strong interest in computational social science since my master thesis on
behaviors towards private data disclosure on the internet during my last year
at Telecom ParisTech and my recent focus on applied mathematics in signal
processing and machine learning led me directly to the several papers published
by the Probabilistic Computing Project at the Brain and Cognitive Science De-
partement at the Massachusetts Institute of Technology.
Their willingness to apply Bayesian statistics to deeply understand the under-
lying causal inferences within for instance global development or healthcare
datasets was exactly what I was expecting for my internship in academic re-
search.
On one hand, this lab is building a new probabilistic programming language, like
Stan or Julia, in order to give basic tools for non statisticians and non computer
scientists to build simple and efficient inference program for their dataset. On
the other hand, it has created a tool, called BayesDB, which relies on Bayesian
statistics, in order to query and find the distribution of high dimensional dataset.

I started working on the different projects in November 2015 remotely from
Paris. It allowed to get familiar with the tools and especially grasp the state of
mind and the concept of the lab. When I arrived early January, my schedule
became pretty clear in a week. I was going to the lab every day, enrolled to
three classes in machine learning and entrepreneurship on Mondays, Wednes-
days and Fridays (basically 1h30 per day) and had engineering meetings on
Mondays at noon, reading groups on Wednesdays at 1 pm and student clinic
(all the students and the supervisor gathering to share the progress on each
project) followed by a social hour. My weekends were great to learn concepts I
could not understand during the week and also to polish work when deadlines
were earlier next week. Most of the work was done in the lab, at the brain
and cognitive sciences department, except some conferences where the lab was
showcasing some work. As far as task related scheduling, every day was kind of
different working sometimes more on research and sometimes more on analysis
for upcoming deadlines for the Gates Foundation for instance.
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2 The probabilistic Computing Project

The MIT Probabilistic Computing Project aims to build software and hard-
ware systems that augment human and machine intelligence. We are currently
focused on probabilistic programming. Probabilistic programming is an emerg-
ing field that draws on probability theory, programming languages, and systems
programming to provide concise, expressive languages for modeling and general-
purpose inference engines that both humans and machines can use.

Our research projects include BayesDB and Picture, domain-specific proba-
bilistic programming platforms aimed at augmenting intelligence in the fields of
data science and computer vision, respectively. BayesDB, which is open source
and in use by organizations like the Bill Melinda Gates Foundation and JPMor-
gan, lets users who lack statistics training understand the probable implications
of data by writing queries in a simple, SQL-like language. Picture, a probabilis-
tic language being developed in collaboration with Microsoft, lets users solve
hard computer vision problems such as inferring 3D models of faces, human
bodies and novel generic objects from single images by writing short (¡50 line)
computer graphics programs that generate and render random scenes. Unlike
bottom-up vision algorithms, Picture programs build on prior knowledge about
scene structure and produce complete 3D wireframes that people can manip-
ulate using ordinary graphics software. The core platform for our research is
Venture, an interactive platform suitable for teaching and applications in fields
ranging from statistics to robotics.

2.1 BayesDB

BayesDB is a Bayesian database that lets users query the probable implications
of their data as easily as a SQL database lets them query the data itself. Using
the built-in Bayesian Query Language (BQL), users with no statistics training
can solve basic data science problems, such as detecting predictive relationships
between variables, inferring missing values, simulating probable observations,
and identifying statistically similar database entries.
BayesDB is suitable for analyzing complex, heterogeneous data tables with up
to tens of thousands of rows and hundreds of variables. No preprocessing or pa-
rameter adjustment is required, though experts can override BayesDB’s default
assumptions when appropriate.
BayesDB’s inferences are based in part on CrossCat, a new, nonparametric
Bayesian machine learning method, that automatically estimates the full joint
distribution behind arbitrary data tables.

2.2 Crosscat

CrossCat is a domain-general, Bayesian method for analyzing high-dimensional
data tables. CrossCat estimates the full joint distribution over the variables in
the table from the data, via approximate inference in a hierarchical, nonpara-
metric Bayesian model, and provides efficient samplers for every conditional
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distribution. CrossCat combines strengths of nonparametric mixture modeling
and Bayesian network structure learning: it can model any joint distribution
given enough data by positing latent variables, but also discovers independen-
cies between the observable variables.

A range of exploratory analysis and predictive modeling tasks can be ad-
dressed via CrossCat[4], including detecting predictive relationships between
variables, finding multiple overlapping clusterings, imputing missing values, and
simultaneously selecting features and classifying rows. Research on CrossCat
has shown that it is suitable for analysis of real-world tables of up to 10 million
cells, including hospital cost and quality measures, voting records, handwritten
digits, and state-level unemployment time series. Croscat is thus a metamodel
creating models and analyzing them. Each ”model” in the sense that you ini-
tialized above represents one Markov-Chain Monte-Carlo particle. In lay terms,
one instance where the generative model can walk around a hypothesis space,
one step per iteration. The hypothesis space for crosscat in particular explores
the number of Gaussians to mix, their means and standard deviations, and
which variables to group as sharing some of those parameters.

On its first step, a particle’s parameters are drawn from its prior probability
distribution, a naive one that we pre-specified. On each step thereafter, the
particle chooses a nearby set of parameters that are both likely according to
that prior, and likely to generate the data you observed (your csv). As the
particle takes more steps, the data have more influence, and the prior has less.

The full model averages over all the particles. This can be a weighted av-
erage, if you initialized different generators different ways (we will talk more
about that shortly), but by default we use equal weights.

The probability of dependence between two variables is the prevalence of
being in the same group in these random walks. It approximates the probability
that the mutual information between those two variables is non-zero. Note
that it does not estimate the value of the mutual information. Note that the
calculation is independent of the size of the inputs, or their particular values,
and dependent instead on the generative process we choose and our exploration
of its implications through these chains of steps in each particle’s random walk.
The essence of probabilistic programming, in this view, is in:

1. specifying separately the generative processes that we use to model data,
(not always Gaussians)

2. specifying their prior probability distributions,

3. specifying the way to get to the next step in the chain,

4. specifying the interpretation of all the particles as an aggregate, and

5. measuring separately the performance of each of these factors.

For each iteration crosscat is doing gibbs step for all the rows within the views
and all the columns within all the partitions (it can also create new partition)
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and roll a die with each side having the log likelihood of the probability of this
row given the data of the view it’s in and the result will fix the view where the
row has to go. Gibbs step decide where next step to go to.

2.3 VentureScript

VentureScript is a higher-order probabilistic programming language that aims
to be sufficiently expressive, extensible, and efficient for general-purpose use.
Some distinctive features include:

· Sufficient expressiveness to handle problems and data sources from multiple
fields, such as machine learning, robotics and statistics.

· An inference programming language that supports combinations of exact and
approximate inference techniques, including Metropolis-Hastings, mean
field, sequential Monte Carlo, Hamiltonian Monte Carlo and gradient de-
scent.

· A JavaScript-like front-end syntax and a read-write textual representation of
the abstract syntax derived from Lisp

· A flexible foreign interface that makes it straightforward to add new primitives,
including higher-order probabilistic procedures, exchangeable sequences,
and “likelihood free” primitives, and to equip them with custom inference
schemes.

· An interactive console that provides tools for inspection, profiling and debug-
ging.

VentureScript is also the main language for programming the Venture platform.

3 Measuring accuracy of inference-based algo-
rithm

This following section relates to the main research I’ve been doing during my
visit. The next sections will deal with the applications I’ve pursued whether on
high dimensional datasets or even my contribution to the general engineering
effort.

Many of the most demanding applications of computing tolerate a spectrum
of solutions to a given problem. Examples can be found in fields as diverse as nu-
merical methods, lossy compression, microchip layout, robotics ([8]), computer
graphics ([9]), and genetics ([2]). The additional flexibility in these applica-
tions makes programming more challenging: There are often several reasonable
algorithms, each with its own tunable parameters and tradeoffs between com-
putational resource consumption and solution quality, and the introduction of
approximate hardware platforms promises to contribute additional degrees of
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freedom. Reliable measurements of accuracy are a first prerequisite for guid-
ing programmers in their exploration of the solution space, and for enabling
automated accuracy-aware program optimization ([7]).

Reliable measurement of the accuracy of approximate inference is important
for guiding inference programmers and automated systems in the exploration of
the large space of conceivable solutions to a given inference problem. However,
due to difficulty in analysis of simulation-based inference for finite computation,
generally applicable techniques and tools for principled measurement of the most
popular inference strategies on a common scale have been historically lacking.
the following technique measures Markov chain Monte Carlo (MCMC)-based
inference programs on a common accuracy scale based on Kullback-Leibler (KL)
divergence. The vision is to increase the productivity of inference programmers,
provide quantitative evaluation and comparison between inference strategies and
allow meta-inference-programming.

First of all, it is important to define what we mean by inference program-
ming.

3.1 Inference programming

In probabilistic programming (PP), the programmer writes a declarative spec-
ification of a probabilistic inference problem, which the PP platform solves or
assists in solving, using built-in inference primitives. PP systems vary in the
amount of flexibility the programmer has in selecting a solution technique. The
Venture PP platform ([5]) offers the programmer sufficient flexibility in selecting
custom solution techniques to warrant use of the term inference programming
to describe the process of choosing a solution technique.

Let’s first formalize the notion of probabilistic programming as used in this
work. We denote probability distributions and random variables by capital
letters (e.g. P (X,Y )), and we assume that all distributions are associated with
associated discrete or continuous densities, which we denote by lower case letters.
We denote joint densities pX,Y (x, y), marginal densities pX(x), and conditional
densities pX(x|Y = y) by the shorthand p(x, y), p(x), and p(x|y), respectively.
We often refer to a distribution by its density.

1. A model program defines a joint probability distribution P over the latent
(unobserved) variables X and observed variables Y , through a procedure
for simulating latent values x according to the prior p(x), followed by
simulation of observed values y (also known as ‘observations’) given latents
according to p(y|x).

2. Together the model program and observations y imply a target distribution
over the latent variables X, which we denoted by Py. The target distri-
bution has density p(x|y) and un-normalized density p̃y(x) = p(x, y). The
task of generating samples from a distribution over the latent variables
that approximates Py defines a problem instance.
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3. An inference program is an executable procedure for constructing and
sampling values for the latent values from its output distribution Q, which
is intended to approximate the target distribution Py. We distinguish be-
tween the output distribution and the inference program because distinct
inference programs implementations can have the same output distribu-
tion. Generally, the output distribution Q depends on the observations
y of the problem instance, but we omit this dependence in the notation.
We denote the type of inference strategy used with superscript label and
denote parameters of the inference program in the subscript. For exam-
ple, QmcmcK is an MCMC inference program with parameter K (to be
discussed in detail later). We assume that an inference program is prim-
itive when it simulates from and evaluates the density under the prior
(qprior(x) = p(x)).

MCMC inference programs are examples.

3.2 MCMC inference programs

Markov chain Monte Carlo (MCMC) is a class of inference programs based on
stochastic simulation. The MCMC inference programs that we consider are
defined by MCMC kernels Ky. In our formulation, an MCMC kernel Ky is map
from the set of ‘previous’ latent states X = x to distributions over a ‘new’ latent
state X ′. We denote the distribution induced by a kernel for a specific previous
latent state X = x by Ky(X ′;X = x) and its density by ky(x′;x). We require
that the following condition (‘detailed balance’) holds:

ky(x′;x)p(x′|y) = ky(x;x′)p(x|y) for all x, x′ (1)

Note that each kernel is parameterized by the observations y, and that Equa-
tion 1 relates the kernel to the target distribution Py associated with these
observations. The Metropolis-Hastings algorithm provides a general and simple
way of constructing kernels with this property.

MCMC inference programs sample an initial state from the prior p(x), and
‘apply’ a kernel Ky by sampling x′ according to ky(x′;x). The marginal distri-
bution over x′ is the output distribution QmcmcKy

of the inference program:

qmcmcKy
(x′) =

∫
p(x)ky(x′;x)dx

Typically, a primitive kernelKy is repeatedly applied a large number of timesM ,
resulting in a Markov chain over latent states

(
x = x(0), x(1), . . . , x(M−1), x(M) = x′

)
.

We marginalize out the intermediate latent states and construct a composite
kernel, denoted KM

y , according to:

kMy (x(M);x(0)) =

∫ M∏
m=1

ky(x(m);x(m−1))dx(1) · · · dx(M−1) (2)
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The composite kernel KM
y also satisfies Equation 1. Since the notion of an

MCMC kernel associated with observations y is closed under this composition
operation, we allow Ky to refer to either primitive or composite kernels.

The purpose of applying an MCMC kernel Ky is to generate a new latent
state whose marginal distribution is closer to the target distribution Py than the
marginal distribution of the previous latent state. In general, the KL divergence
cannot be increased by the application of a kernel (a proof that KL divergence
must decrease, in other words must improve, has been done before assuming
this result) :

DKL(Qmcmc
KM+1

y
||Py) ≤ DKL(QmcmcKM

y
||Py) ≤ DKL(Qprior||Py) (3)

DKL(QmcmcKM
y
||Py) > 0 =⇒ DKL(Qmcmc

KM+1
y
||Py) < DKL(QmcmcKM

y
||Py) (4)

In general, as the number of repetitions of a primitive kernel in an MCMC
inference program increases asymptotically, the output distribution converges
to the target distribution. However, the rate of this convergence for finite M is
difficult to assess. That’s where I decided to focus.

3.3 Models and Problem Instances

We consider generative probabilistic models in which there are global latent
random variables Θ, local latent random variables Z1:T , and observed random
variables Y1:T , which can be simulated given the latents.

Next, a problem instance, is defined by a joint distribution P (Θ, Z1:T , Y1:T ) =

P (Θ)P (Z1:T |Θ)
∏T
t=1 P (Yt|Θ, Zt). A ProblemInstance is defined as a Model

along with realized values for the observations, denoted y1:T . A ProblemInstance
may be created by applying simulate to a Model, or by manually combining a
Model with compatible observations y1:T . Each ProblemInstance encodes a
task of approximate conditional sampling from a target distribution, which is
the conditional distribution P (Θ, Z1:T |Y1:T = y1:T ). The un-normalized density
of the target distribution is denoted P̃ (Θ, Z1:T |y1:T ) = P (Θ, Z1:T , y1:T ), with
normalizing constant P (y) =

∫
P̃ (Θ, Z1:T |y1:T )dΘdZ1:T .

3.4 Algorithms

An inference algorithm, indexed by a ∈ A, is a procedure that takes a problem
instance as input and produces samples from a distribution Qa as output, such
that Qa is an approximation to the target distribution P (X|Y = y). Specifically
we will condider the following class of inference algorithms:

3.4.1 Single-particle MCMC

A single-particle MCMC algorithm [1] is defined by a sequence of MCMC tran-
sition kernels, K1 through KT , and a sequence of augmentation proposals Qaug1
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through QaugT . Each Kt is defined on the space (Θ, Z1, . . . , Zt), and satisfies
detailed balance for the corresponding target distribution:

Kt(θ
′, z′1:t|θ, z1:t)

Kt(θ, z1:t|θ′, z′1:t)
=
P (θ′, z′1:t|y1:t)
P (θ, z1:t|y1:t)

for all θ, z1:t, θ
′, z′1:t, 1 ≤ t ≤ T (5)

The Kt do not need to be assessable, meaning their log-density does not need
to be evaluated. The Qaugt are assessable distributions over zt+1, given z1:t and
y1:t+1:

Qaugt (zt+1|z1:t, y1:t+1) for all 1 ≤ t ≤ T (6)

The algorithm samples from a Markov chain over the state space x = {θ(t), z(t)1:t+1}
T−1
t=0 .

The algorithm initializes the Markov chain by sampling θ(0) from the prior

P (Θ), and sampling z
(0)
1 from Qaug1 (z1|θ(0), y1). Then, the algorithm proceeds

by alternating between sampling from the kernels Kt and sampling from the
augmentation proposals Qaugt+1, for 1 ≤ t ≤ T − 1, producing the full distribution
over the Markov chain:

Qa(x) = P (θ(0))Qaug1 (z
(0)
1 |y1, θ(0))

T−1∏
t=1

Kt(θ
(t), z

(t)
1:t |θ(t−1), z

(t−1)
1:t )Qaugt+1(z

(t)
t+1|θ(t), z

(t)
1:t)

(7)
The algorithm defines the output distribution Qa as the marginal distribution

of the final latent sample θ(T−1), z
(T−1)
1:T in the sequence:

Qa(θ, z1:T ) =

∫
· · ·
∫

Qa(x)dθ(0) · · · dθ(T−2)dz(0)1:T · · · dz
(T−2)
1:T (8)

The algorithm is reproduced below:

Algorithm 1 Single-particle MCMC algorithm

Require: K1, . . . ,KT−1 are MCMC kernels and Qaug1 , . . . , QaugT are aug-
mentation distributions compatible with problem instance defined by
P̃ (θ, z1:T , y1:T )

1: w ← 1
2: θ(0) ∼ P (Θ) . Sample θ from the prior

3: z
(0)
1 ∼ Qaug1 (z1|θ(0), y1)

4: for t← 1 to T − 1 do
5: (θ(t), z

(t)
1:t) ∼ Kt(θ, z1:t|θ(t−1), z(t−1)1:t ) . Run the MCMC kernel Kt

6: z
(t)
t+1 ∼ Qaugt+1(zt+1|θ(t), z(t)1:t , y1:t+1) . Augment the state space

7: w ← w · P (z
(t)
t+1,yt+1|θ(t),z(t)1:t ,y1:t)

Qaug
t+1(z

(t)
t+1|θ(t),z

(t)
1:t ,y1:t+1)

8: end for
9: return (θ(T−1), z

(T−1)
1:T ), w . Return the sample (θ(T−1), z

(T−1)
1:T ) ∼ Qa and

the weight w
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3.5 The data and the technique

As a working example, we will use a univariate finite Gaussian mixture model
with fixed mixture proportions π, fixed data variance σ, fixed prior N (µ0, σ0)
on the component means, and K mixture components. The generative model
is:

µk ∼ N (µ0, σ0) k = 1, . . . ,K
zt ∼ Categorical(π) t = 1, . . . , T
yt ∼ N (µzt , σ) t = 1, . . . , T

(9)

The realized values of the global latents are θ = {µk}Kk=1, the realized values
of the local latents are {zt}Tt=1, and the realized values of the observations are
y = {yt}Tt=1. Given values of y, defining a problem instance, we could apply
various inference algorithms a to this problem. Each algorithm a will produce a
sampling distribution Qa over the values {µk}Kk=1 and {zt}Tt=1 that attempts to
approximate the target distribution P (µ1, . . . , µK , z1, . . . , zT |y1, . . . , yT ). This
work describes a technique for objectively measuring on a the same scale the
accuracy on a given problem instance of algorithms a that span a wide set of
different types of inference strategies. Specifically, the distributionsQa produced
by Markov chain Monte Carlo (MCMC) algorithms can be compared on the
basis of the following quantity:

L(Qa) = Ex∼Qa

[
log

P̃ (x|y)

Qa(x)

]
(10)

This quantity is the Evidence Lower BOund (ELBO). L(Qa) gains meaning
through its relationship with the KL-divergence:

DKL(Qa(X)||P (X|y)) + L(Qa) = logP (y) (11)

Specifically, even if logP (y) is not known, the following relationship holds:

L(Qa1) ≥ L(Qa2) =⇒ DKL(Qa1(X)||P (X|y)) ≤ DKL(Qa2(X)||P (X|y)) (12)

A lower bound on L(Qa) for MCMC algorithm can be estimated: the log
weight (see appendix for the proof), to produce estimates of upper bounds on
the KL-divergence DKL(Qa(X)||P (X|y)) (as the equation (7) suggests it) for
algorithms a.

3.6 Measures and Validation

According to [3], single particle learning parameters can be described as follow:
In what follows, there are T observations y1, . . . , yT , local latents z1, . . . , zT , and
global latents θ, with joint distribution P (θ, z1:T , y1:T ) = P (θ)

∏T
i=1 p(zi|θ)p(yi|zi, θ).
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3.6.1 Pure MCMC algorithm

l — l
Extended state space x = (θ, z1:T )(t) for t = 0 . . . T − 1

MCMC Kernels Kt(θ
(t), z

(t)
1:T |θ(t−1), z

(t−1)
1:T ) target P (θ, z1:T |y1:t) for t =

1 . . . T − 1 (reversible)

Extended sampling distribution Q(x) = P (θ(0), z
(0)
1:T )

∏T−1
t=1 Kt(θ

(t), z
(t)
1:T |θ(t−1), z

(t−1)
1:T )

Extended target distribution P(x) = P (θ(T−1), z
(T−1)
1:T |y1:T )

∏T−1
t=1 Kt(θ

(t−1), z
(t−1)
1:T |θ(t), z(t)1:T )

Particle weight w(x) =
∏T−1
t=1 P (yt|θ(t−1), z(t−1)1:T )

Exact MCMC KL-bound DKL(Q||P) =
∑T−1
t=0 DKL(P (θ, z1:t+1|y1:t)||P (θ, z1:t+1|y1:t+1))

3.6.2 Validation

In order to test the implementations of these algorithms, we compared the
asymptotic bounds to the actual asymptotic expected log-weight produced by
our implementations for several small problems (Independent Metropolis Hast-
ings Random Walk Metropolis Hastings) in which the asymptotic bounds can
be computed exactly. We tested our instance of the pure MCMC algorithm
(Algorithm 3.6.1) in which the model has no local latents zi.
105 independent runs for each distinct MCMC kernel and count of MCMC itera-

tions were used to produce estimates L̂P̃(Q) of the expectation Ex∼Q[logw(x)] =
LP̃(Q) . The true logZ was analytically computed, and the estimated KL-

bound was computed as: logZ − L̂P̃(Q) (as the equation (11) suggests it)
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Validating the asymptotic KL-bound for a conjugate normal model

Estimated KL-Bound (Independent Metropolis-Hastings)

Estimated KL-Bound (Random-Walk Metropolis-Hastings)

Analytic Asymptotic KL-Bound

Figure 1: Validation of Algorithm 3.6.1 applied to a conjugate normal model
(µ0 = 0, σ0 = 10, σ = 1) using an independent Metropolis-Hastings (IMH) with
proposal from the prior, and a random-walk Metropolis Hastings with a N (µ, 2)
proposal.

As you can see, the estimated bounds converged to the expected asymp-
totic values, validating both the use of the log weight (its expectation) and the
correctness of implementation.

4 Crimes rates in the US

This project was some kind of a warmer project to get me started in the lab.
Later, once my assimilation of the research area I was in and the overall goal,
I understood how important it was to have done an initial analysis using ’tra-
ditional’ statistics. Indeed, using computerized statistics and models (where I
was manually defining the different distributions for each of my variables) in
my two next applications made me thought of the paradigm shift the lab was
trying to provoke. Super exciting state of mind to be in.
The goal was to model murder in US States using log linear Poisson regression.
Homicide rates in the US are twice the OECD average. The study I developed
a generalized linear model to characterize the murder rate in the 50 US states
as a function of various features. We begin by explaining the dataset, followed
by an exploratory data analysis. We then compute several plots to understand
the structure of the data.
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4.1 The Dataset

The states dataset is a publicly available dataset with the following information
about the 50 states of the USA in 1977

• State: name of state

• Murder: murder and non-negligent manslaughter (per 100,000)

• Assault: arrests for assaults (per 100,000)

• Rape: arrests for rape (per 100,000)

• Population: population estimate (100,000s)

• Income: per capita income (USD)

• Illiteracy: illiteracy rate (percent of state population)

• LifeExp: life expectancy (years)

• HSGrad: high-school graduates (percent of state population)

• Frost: mean number of days with temperature below freezing in capital
or large city

• GDP: gross domestic product (real USD, percent increase 1975-76)

• Minority: non-white population (percent of state population)

• LiveAlone: one-person households (proportion of total housing units)

• Divorce: divorce rate (per 1,000)

Our goal is to develop a model that expresses Murder as a function of a
subset of state characteristics. How do factors such as income, rape arrests,
or life expectancy covary with the murder rate? How can knowledge of the
covariates1 help us model and predict the Murder rate?

4.2 Exploratory Data Analysis

Table 1 contains the summary statistics of each series. Life expectancy has
the lowest relative variation between states. High School graduation rates vary
much more, which offers some predictive promise. Youth who are not in school
are more likely to join gangs or other illicit groups than their educated counter-
parts. Figure 2 show the empirical distribution of Murder. The distribution of
minorities is also varied, ranging from 0.6% (Vermont) to 70% (Florida) of the
state population. The boxplot illustrates a slight right-skew in the data, but
the right tail is quite heavy.

1The terms regressors, covariates, features, and predictors are used analogously throughout.
The first two are used in classical statistics, while the latter two are common in machine
learning.
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Mean Std CV Min Q1 Median Q3 Max
Murder 7.5 3.7 0.50 1.4 4.4 7.0 10.9 15.1
Assault 171 83 0.49 45 109 159 249 337
Rape 21.2 9.4 0.44 7.3 15.1 20.1 26.2 46.0
Population 4246 4464 1.05 365 1080 2839 4969 21198
Income 4436 614 0.14 3098 3993 4519 4814 6315
Illiteracy 1.17 0.61 0.52 0.50 0.63 0.95 1.58 2.80
LifeExp 70.9 1.3 0.02 68.0 70.1 70.7 71.9 73.6
HSGrad 53.1 8.1 0.15 37.8 48.1 53.3 59.2 67.3
Frost 104 52 0.50 0 66 115 140 188
GDP 12.2 3.7 0.31 3.8 9.9 12.6 14.7 20.1
Minority 12.8 13.8 1.08 0.6 3.9 9.0 15.4 70.8
LiveAlone 16.8 2.0 0.12 12.8 15.3 16.8 18.5 21.0
Divorce 5.3 2.4 0.45 2.7 3.7 5.1 6.3 17.8

Table 1: Descriptive statistics of columns in the dataset. The empirical
coefficient of variation (CV) is the ratio of the standard deviation and mean, is
used to compare the variability of different columns. Life expectancy, single per-
son households, and income have the least relative variation, while population
and minority rates vary the greatest.

4.3 Pairwise Regressions

Since the number of potential predictors in the dataset is quite small, we can
take a closer look at how Murder varies with each predictor separately. This will
help us determine which predictors are particularly helpful, and type of model
to develop. Figure 3 shows the Murder rate scatter-plotted against the predic-
tors. The figure reveals quite interesting patterns and some of the relationships
appear somewhat linear. In particular, Murder is clearly inversely related to the
LifeExp covariate, where a simple regression line captures 60% of the variation
(the highest among all predictors). The scatter plots of Rape and Assault are
similar and illustrate their positive covariance with Murder. On other hand, it is
harder to observe patterns with Population, Income, and Illiteracy. In the
Population plot, most data points are in the 0 to 5000 range where the points
appear randomly scattered. However as Population increases, the Murder rate
is higher on average. This non-linearity suggests a regression spline model may
be appropriate for the Population regressor.

4.4 Principal Component Analysis of Regressors

We have so far studied the relationship of Murder with various predictors. How-
ever, it is also worth exploring how the predictors covary with one another.
Unfortunately it is difficult to perform a pairwise scatter plot similar to Figure
3, since we require 28 plots which is too much to process visually. Instead, we
perform a principal component analysis on the predictors to study their rela-
tionships. The principal components (u1, . . . ,ur) of an N × d data matrix X
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Figure 2: Histogram and boxplot of the murder rates. The histogram
suggest the marginal distribution of murder rates is multi-modal. The boxplot
shows a right skew in the data, which indicates that there is greater variability
at higher values in the murder distribution

.

where each of the rows xTi is an observation in Rd, are orthogonal vectors in
the d-dimensional feature space. The first principal component u1 ∈ Rd is the
direction in which the columns of X have greatest variability, u2 is the direction
orthogonal to u1 of greatest variance, and so on. The principal component score
zji of an observation xi is the scalar projection of xi on uj .

Studying the first few principal component scores of an observation allows us
to obtain its low-dimensional representation, which is visualized using a biplot.
In Figure 4, we have projected each data point xi onto R2 by computing its
first and second principal component scores, z1i, z2i. To capture additional
information in the biplot, the area of each circle is proportional to the Murder

rate of that state. The projection of the original dimensions is shown in red.
Figure 4 demonstrates many interesting trends. First, we see that the pre-

dictors fall roughly into four clusters based on their projection to the plane
spanned by the first two PC loading vectors:

• LifeExp, Frost

• LiveAlone, HSGrad, Income

• Divorce, Rape, Population, Assault

• Minority, Illiteracy, GDP

.
The PCA shows that the Southern states of AL, GA, TX, MI, and LA have

high scores along the Illiteracy axis and wide Murder circles. In contrast,
states clustered in the bottom left of the diagram have much smaller circles,
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Figure 3: Pairwise regression of murder on various state predictors.
Assault, Rape, LifeExp, and Minority appear correlated with murder rates,
where simple linear regression accounting for over 20% of the variation. The
relationship is clearly non-linear for other predictors, such as Population and
Divorce rates.

illustrating an negative correlation with [Divorce, Rape, Population, Assault]
as a group. The relationship between Murder and the clusters of predictors will
be useful in feature selection and model evaluation.
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Figure 4: Principal component analysis of the feature matrix. Each circle
represents the projection of the state onto the 2-dimensional plane spanned by
the first and second principal components. The size of the circle is proportional
to the murder rate. The projection of the variables themselves are shown in red
and indicate the contribution of each variable to the first and second PCs. The
columns are clustered into roughly four groups: (Forst, LifeExp), (LiveAlone,
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5 US College Scorecard

This project is the first project that led me to using BayesDB, the AI assistant
i’ve described earlier.
This dataset has been carefully chosen by me and Vikash. We needed to build
an analysis where the historical ones were misleading the readers, inclined to
emotional behaviors and definitely splitting the communiity with different point
of views. The Education was ideal. Ironically enough, the College Scorecard
dataset was published by the U.S. Department of Education in October 20151.

The Economist triggered discussion about this dataset in an article describ-
ing a ranking system based only on earnings after graduation2. While the vision
of BayesDB, and of probabilistic programming languages in general, is to come
as an AI-enhanced medium to create consensus on different fields where histor-
ically, researchers, scientists, domains experts, barely succeed in agreeing with
each other, the analysis on the US Education Scorecard would give a good ma-
terial to show how non experts of the domains (I am certainly not, besides the
only input about the models are only mathematics wise and surely not involving
cultural knowledge for instance) could compute logical and complete analysis of
a specific field.

5.1 Problem Statement

This huge dataset is going to be a good field for BayesDB to showcase its ability
to understand any dataset and extracting useful insights of the fiels.

· The issue is that traditional rankings of American colleges do not focus on
many variables and base its core analysis on metrics related to graduates
earnings. In the meantime, the challenge here is to be able to compute
a transparent value-added for each college in order to quantify the salary
boost the students are receiving from attending such schools.

· Also, current rankings prefer translating the opportunities given by a school,
via its network, its partnerships... and not on the hard work and intelli-
gence of its graduates.

· In this following document, we will ask BayesDB different questions in terms
of relations between variables and distribution of some metrics to compare
these results to our intuition and to other iterations of the same models.

As a result, we should expect our tool to take into consideration every relation
between variables and show us intuitive dependencies and simulations.

We will organize the study in different parts:

1https://collegescorecard.ed.gov/data/
2http://www.economist.com/blogs/graphicdetail/2015/10/value-university
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1. The first part will consist of analyzing a small subsample, given our initial
selection of 50 variables, of 100 observations (colleges). We’ll be plotting
the dependencies heatmap and be adding more and more observations
with fixed and variable number of models and iterations. Both cases would
show interesting results.

2. Then, using gpmcc, a new implementation of CrossCat from the the lens
of generative population model (GPM), we’ll simulate distributions of a
few variables and compare them with the existing distributions and our
intuition. We’ll try the same experiment by inferring missing values only.

3. On the same variables, we’ll ask BayesDB to find unlikely data, whether
they are outliers or input errors.

4. Finally, we’ll simulate colleges by size, selectivity and students earnings
after graduation and challenge stereotypes about colleges thanks to these
results.

5.2 Dataset

The dataset published by the U.S. Department of Education is composed of 18
years (from 1996 to 2013) of data about more than 7,000 schools. More than
1,700 variables have been measured each year for each university. The number
of universities fluctuates according to the creation of new schools and the closing
of existing ones.

The overall dataset contains more than 215 million values with
43% of them missing.

Figure 1 highlights the number of variables measured each year. Obviously,
we’ve been able to measure more and more variables through the years, but for
some reason many data are missing in 2013 (the last year this study has been
conducted). Obama’s administration college database is way more transparent
and better quality compared to datasets used by US rankings publishers. It has
better data on family income, family education levels of entering students and
more sophisticated measures of degree completion as well as loan repayment.
These numbers have been generated in particular by matching students loans
to their actual tax returns. As a result, we are able to compare professionals’
earnings to their student characteristics.

Note: The data only includes students who applied for financial aid and thus
is missing all the students with well-off parents. Also, as the earnings data only
take into consideration 10 years after starting college, one could argue that this
scope of time is too small to include future high earners, as they would still be
students (e.g. Ph.D., post-doctorate).
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Figure 5: Data available per year

The number of schools from one year to another is also varying. Here is an
overview of how many schools we have metrics of. One can tell that the overall
trend is showing an increase in number of schools even though from 1996 to
1998 we can observe more schools closing than being created. One interesting
result could be to characterize the fall of trends of these schools and be able to
predict future outlook of current schools based on their most recent data.

bdball = bayeslite.bayesdb_open("dfall.bdb", builtin_metamodels=False)

bdbcontrib.barplot(bdball, ’’’

SELECT year ,

COUNT(OPEID) AS "Number of schools"

FROM dfall

GROUP BY year

ORDER BY year asc

’’’);

Figure 6: Number of colleges in the US per year
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Our 57 variables include some financials and specs about the universities.
Here is a full list of the variables selected for the study

Figure 7: Codebook for our variables
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For a purpose of space I will attach my whole report on this analysis.

6 Bill&Melinda Gates Foundation

For a couple of years now, the Gates Foundation has been putting tremendous
efforts to have an impact in the developing countries. In particular, they are
collecting huge amount of data through surveys and on-field experiments in
poor countries around the world. Data about education, health, finance, etc.
led the Foundation to create a unique project, named HBGDki (for Healthy
Birth, Growth and Development knowledge integration) aiming at developing
knowledge towards all this data. The lab I joined is a member of the latter.
The main duties I was assigned to were:

1. Developing new tools to allow program managers at Gates Foundation to
access the full potential of Bayesian inference through our tool BayesDB.

2. Analyzing several datasets and show proof of concepts of the tools

6.1 Visualization tools

I started by writing a python script that would allow any user to generate a data
sketch, of any dataset, from the command line. The challenges were multiple.
First, we had to figure out what kind of information to include in the two pager
sketch so that any reader could get a sense of the content of the dataset and even
more, understand a bit the field. Second, the user experience was crucial since
most of the targeted users for this sketch generation tool were not computer
scientists and did not want to deal with lines of codes.

To address the first issue, several iterations with my supervisor were neces-
sary and led to the following template:

1. The title of the dataset with its description (generally the name of the
dataset was opaque)

2. A warning message automatically displayed in case the user did not have
the codebook. The codebook is the description of each variable name, that
are most of the time opaqe (for instance SIFTMM for Supraillac Skinfold
Thickness (in mm))

3. A table summarizing the shape of the entire dataset (columns and rows)
and the shape of the random subsample to run the analysis on. Indeed,
since the analysis takes time, we decided to do the sketch on a subsample
of 1000 rows and 20 columns.

4. The number of models (markov chains), iterations (of each chain) and the
time of analysis

5. A dependence probability heatmap showing dependence probabilities from
pairwise columns of the sample
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6. A pairplot of 2 random variable

7. Three first entries for each of the variable to give a sense of the actual
data

8. A table summarizing the type (numerical or categorical) of the random
variables in the metamodel and the percentage of missing values.

The second issue, with respect to the user experience and the ease of use of
the tool, was a bit tricky. Indeed, many choices have to be taken by whoever
uses the script to generate it: codebook file to include, how many columns and
rows to subsample, include the description of the dataset for external readers,
the number of models one should create, the number of iterations, the type of
each variable, etc.

To make it super simple and straight forward we decided to let less freedom
to the user since the purpose of this tool is not to do a proper statistical study
but to have a glance at a dataset and have some insights on a particular field.
As a result we limited the number of models to 50 and iterations to 100. Enough
for the markov chains to converge and quite reasonable to run on any personal
computer. Also, we use the GUESS function of our metamodel that automati-
cally detect categorical and numerical variable (and assigning them broad prior
distributions) avoiding the user to select manually each distribution for each
variable.

At the end, we came up with a script that can be run from the command
line. You have to whether run:

python sketch . py f i l e . csv f i l e c o l . csv

or

python sketch . py

to run it on all the datasets in your current folder.
Figure 8 showcases an example of a sketch:

24



Sample Sketch of BngR_Study: data.csv

Cross-Sectional Dietary Survey in Children Aged 24-48 months in Bangladesh

Shape:

Object Rows Columns

Dataset 548 79

Sample 548 21

Initialization of 50 models with 100 iterations for 561 seconds

Sketchmap of dependancies Pairplot

Data for 10 variables (rows) from 3 records (cols):

Record ID 0 1 2

age since birth at examination (days) 1055.0 1746.0 1245.0

weight (kg) 13.7 13.5 11.7

standing height (cm) 89.1 96.05 88.95

bmi (kg/m**2) 17.256994436 14.633190624 14.787472736

weight for age z-score -0.25 -2.16 -2.12

length/height for age z-score -1.67 -2.75 -2.61

weight for length/height z-score 0.96 -0.73 -0.97

bmi for age z-score 1.22 -0.46 -0.56

weight for age z-score (rpt) -0.25 -2.16 -2.12

length/height for age z-score (rpt) -1.67 -2.74 -2.61

Figure 8: Sample Sketch of BngR Study
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The outcomes were very encouraging and the lab is currently negotiating
with a visualization third party to explore new opportunities.

6.2 Growth & Development datasets

I’ve analyzed dozens of datasets from malnutrition to IQ. Here are an example
of some of them:

1. CONTENT Study of Growth, Diarrhea and Socioeconomic Status

2. Randomized, community-based trial of the effect of zinc supplementation,
with and without other micronutrients, on the duration of persistent child-
hood diarrhea in Lima

3. Cross-Sectional Dietary Survey in Children Aged 24-48 months in Bangladesh

4. Systems Dynamics Modeling of Growth in Children

5. Dataset of a 1959 cohort with data on IQ at age 1, 4 and 7. Plus some
maternal parity and cigarettes use data

The work was basically to find quick and dirty dependencies that could
make sense between variables with the minimum amount of expertise, obviously,
and of human processing. Some outstanding results came out of an analysis
ran on GUSTO (Growing Up in Singapore toward Healthy Outcomes) where
simple analysis and plots enabled us to write a convincing stories about the
dependencies between level of Zinc, Iron and Magnesium of the mother and
some physical characteristics of the baby such as the head circumference, BMI
for age at z-score, etc.

Finally, I finished my visit with a work on the satellites example the lab
particularly cherish for all the options it gives to showcase our work. The
datasets include hundreds of satellites and 23 metrics such as the name, perigee,
apogee, period, lifetime, etc. Program managers from the Foundation were
dubious about the ability of our metamodel, Crosscat, to cluster the rows and
the columns into meaningful clusters. This is indeed a crucial question since
the whole dependency matrix is based on this clustering (the estimate of the
mutual information between two variables is the number of times they are in
the same cluster).

The idea we had was to draw the final state of the markov chain (of one
model only) and compare this to pairplots and simulated data.

I wrote a function to draw the state of any model and highlight the clustering
of the variables. Figure 9 shows the raw data (none of the rows and columns
are clustered). Red color is nan values and the shade of black are the values
(dark is low).
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Figure 9: Raw Data

After analysis, the Figure 10 shows the actual clustering Crosscat made. The
yellow lines are the row cluster assignments and each variables are organized into
views.

Figure 10: State view: clustering rows and columns in views
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We can easily notice two satellites clusters defined by the Anticipated Lifetime
(whether low or high). We then plotted the joint distribution of the perigee and
period conditioned on the anticipated lifetime,
P (period minutes, pergigee km|Anticipated Lifetime = 3) and
P (period minutes, pergigee km|Anticipated Lifetime = 15) to assess that the
clustering makes sense. The pairplots shown on figure 11 are pretty straight
forward.

(a) Cluster conditioned on low lifetime (b) Cluster conditioned on high lifetime

Figure 11: Pairplots showing the conditional clustering

These results were useful to convince the program manager during a call
the week after. Some more efforts are being put to extend this to different
metamodels and with simulated data.

7 Software engineering

Finally, my contribution throughout the visit was also regarding the engineering
efforts. Not only the research team, where I was in, had the responsibility to
report bugs when they were facing them (even the non blocking ones) but also
had to put efforts into suggesting ways of fixing them. And in general we were
constantly searching for better features or improvements of existing ones. This
side task allowed me to develop my skills with respect to working in a software
environment and dealing with engineering teams. Either on communication and
organization plan, I think it was very useful for me to contribute.
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8 Appendix

8.1 Proof that log weight is unbiased estimator of lower
bound on ELBO for single particle MCMC

First, consider the distribution of x(0:T ) = (x(0), . . . , x(T )) induced by a single
run of Algorithm 0. which we will refer to as the extended sampling distribution,
and denote by Qmcmc

K (x(0), . . . , x(T )), with density:

qmcmcK (x(0:T )) = p(x(0))

T∏
t=1

ky1:t(x
(t);x(t−1)) (13)

First, note that by Equation 3 the application of the final kernel Ky1:T cannot
increase the KL divergence:

DKL(Qmcmc(X(T ))||Py1:T ) ≤ DKL(Qmcmc(X(T−1))||Py1:T ) (14)

log p(y)− LPy
(Qmcmc

K (X(T ))) ≤ log p(y)− LPy
(Qmcmc

K (X(T−1))) (15)

LPy (Qmcmc
K (X(T−1))) ≤ LPy (Qmcmc

K (X(T ))) (16)

Therefore, it suffices to find a lower bound on the ELBO for the marginal
Qmcmc(X(T−1)). Following the derivation of [6], we construct the following
extended target distribution on the space x(0), . . . , x(T−1), with density:

pmcmcy,K (x(0:T−1)) = p(x(T−1)|y1:T )

T−1∏
t=1

ky1:t(x
(t−1);x(t)) (17)

Conceptually, Pmcmcy,K is an imaginary distribution that first samples x(T−1) from
the target distribution Py and proceeds sequentially, sampling from the kernels
Ky1:t in reverse order for t = T − 1, . . . , 1. We define the un-normalized density
of Pmcmcy,K as:

p̃mcmcK,y (x(0:T−1)) = p(x(T−1), y1:T )

T−1∏
t=1

ky1:t(x
(t−1);x(t)) (18)

The normalizing constant of p̃mcmcy,K is then the same as the normalizing constant
of the the un-normalized density of the original target distribution p(x|y) =
p(x,y)∫
p(x,y)dx

= p(x,y)
p(y) :∫
p̃mcmcy,K (x(0:T−1))dx(0) · · · dx(T−1) =

∫
p(x, y)dx = p(y) (19)
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The ratio of pmcmcy,K (x(0:T−1)) to qmcmcK (x(0:T−1)) is exactly the weight w re-
turned by the algorithm:

p̃mcmcy,K (x(0:T−1))

qmcmcK (x(0:T−1))
=
p(x(T−1))p(y1:T |x(T−1))

p(x(0))

T−1∏
t=1

ky1:t(x
(t−1);x(t))

ky1:t(x
(t);x(t−1))

(20)

=
1

p(x(0))

[
T−1∏
t=1

p(x(t−1))p(y1:t|x(t−1))
p(x(t))p(y1:t|x(t))

]
p(x(T−1))p(y1:T |x(T−1))

(21)

=

T−1∏
t=1

p(yt|x(t−1)) (22)

= w (23)

where we have used the fact that the kernels Ky1:t satisfy detailed balance
(Equation 1) to simplify:

ky1:t(x
(t−1);x(t))

ky1:t(x
(t);x(t−1))

=
p(x(t−1)|y1:t)
p(x(t)|y1:t)

=
p(x(t−1))p(y1:t|x(t−1))
p(x(t))p(y1:t|x(t))

(24)

Consider the following identity, but for the extended sampling and extended
target distributions of the mcmc algorithm:

DKL(Qmcmc
K ||PmcmcK ) + Lpmcmc

y,K
(Qmcmc

K ) = log p(y) (25)

Note that Qmcmc
K (X(T−1)) and Py(X(T−1)) are the marginal distributions of

X(T−1) for Qmcmc
K and Pmcmcy,K , respectively. Therefore:

DKL(Qmcmc
K (X(T−1))||Py) ≤ DKL(Qmcmc

K ||Pmcmcy,K ) (26)

Combining this with Equation 25 gives:

log p(y)− LPy
(Qmcmc

K (X(T−1)) ≤ log p(y)− Lpmcmc
y,K

(Qmcmc
K )

Lpmcmc
y,K

(Qmcmc
K ) ≤ LPy

(Qmcmc
K (X(T−1)))

Ex(0:T−1)∼Qmcmc
K

[
log

p̃mcmcy,K (x(0:T−1))

qmcmcK (x(0:T−1))

]
≤ LPy

(Qmcmc
K (X(T−1)))

E [logw] ≤ LPy
(Qmcmc

K (X(T−1)))

Combining this with Equation 16 gives the desired result:

E [logw] ≤ LPy
(Qmcmc

K (X(T−1))) ≤ LPy
(Qmcmc

K (X(T ))) = LPy
(QmcmcK ) (27)
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