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NOTATIONS

o Z=(Z4,....,2Zv) € ZCRY Y =(Y1,...,Yn) €Y C RY Random
Variables
@ Measurable spaces with the associated incomplete and complete
densities p(y;,8) and p(y;, zi, ) where:
@ y; is observed
e z; is the individual parameter
e 0 is the population parameter

e Continuous, non linear and mixed effects population models:

yi=f(zi) + € (1)
Where:

o The structural model f : © — R is non linear and twice differentiable
€i ~N(0,0%) and 0 € R

z; ~ N (Zpop, ) such that z; = zpep + 1 with 7; ~ N(0, Q)

yilzi ~ N(f(z),?) (hierarchical model)

@ In our case 0 = (zpop, 2, 0)
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MAXIMUM LIKELIHOOD

The goal is to compute the maximum likelihood estimate

oML — arg max p(y, 0) (2)
0cO

The EM algorithm (Dempster, Laird and Rubin) is an iterative algorithm
that computes this quantity by maximizing an auxialiary quandity
Q : ©2 — R at a given parameter estimate 8’

Q(H? 9/) = ]Ep(z|y,6’) [|Og p(Yv Zz, 0)] (3)

Unfortunately, in the framework of nonlinear mixed effects models, there is
no explicit expression for the E-step since the relationship between
observations y and individual parameters z is nonlinear so the expectation
cannot be computed in closed form. Thus, we use a stochastic version of
the EM.
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PARAMETER ESTIMATION: SAEM ALGORITHM

SAEM

At a given 9K 1:
@ z ~ p(zly,0°1)  (MCMC)
@ QK(0) = Q“H(0) + (T iLy log plyi. 2, 0) — Q1(9))
k _ k
Q@ 0 =arg rapeagQ (9)
How to accelerate the algorithm?

e Incremental/mini-batch strategies (see Neal & Hinton on the EM or
F.Bach on the SGD)

e Faster MCMC dynamics (SG-MCMC based on an It6 diffusion, see for
instance MALA based on a Langevin diffusion)

o Efficient proposal for a Metropolis Hastings algorithm based on a
Laplace Approximation of the incomplete log likelihood log p(y, 6)
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e Laplacian Method
@ Laplace Approximation of the incomplete likelihood around the MAP

(zimap = arg max p(zilyi, 0))

p(yi,0) = / p(yi, zi,0)dz; = / eloePUinz0) gz, (4)

~ @08 P(yi,zi,map,0)
e 5
\/| V2|0gP y,,z, MAPa0)| ( )

@ Approximation of the posterior
—2log p(y;, 0) = —plog(2m) + log(| — VZlog p(yi, z,mar. b)) (6)
~+2 log p(zi,map|yi,0)
— 2log p(yi, zi,map, 0) (7)

e Equivalent to linearizing the structural model f around the MAP:

Yi = zimap +° (zi — zi,map) V2 f(zimap) + € = zilyi ~ N(u,T)
3
)
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APPLICATIONS

37 winter wheat experiments consisting in five to eight different
nitrogen fertiliser rates, for a total of 224 nitrogen treatments.
Nitrogen fertilizer was applied in two applications during the growing
season. For each nitrogen treatment, grain yield (adjusted to 150
g.kg-1 grain moisture content) was measured.

In this problem the sites are denoted by the index "i" and are the
individuals in the dataset, the predictor is the dosage, the response is
the grain yield and the covariate is the soil nitrogen

We use a Quadratic Plateau model here and the structural model is:

(9)

f(Z) _ (Ymax)i + B; * (ti - (Xmax)i)z, if t> (Xmax)i
: (Yimax)is otherwise

Where z; = ((Xmax)i, (Ymax)iy BI)
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APPLICATIONS

COMPARISON

o New independent proposal. At a given iteration k:

zf ~ N(zi,map, [~ V7 log p(yi; zimap, 0)] ) (10)
With:
_ Vplyilzi, 0)*Vp(yilzi, )
p(yilzi,0)?
o Comparison of the MCMC properties with:
o Random Walk Metropolis (proposal N(z/,Q))

o Metropolis Adjusted Langevin Algorithm (proposal based on the
Langevin dynamics N (zX — 7V log 7(z¥), v/27k))

-t (11

V2 log p(yi, i map, 0) =

Y max RWM MALA  Laplace

MJSD 0.02237 0.04297 0.14297
Var( 3%, zF) 0007 0018  0.006
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COMPARISON

@ Autocorrelation plots

RWM SAEM Autocorrelation MALA SAEM Autocorrelation Laplace SAEM Autocorrelation
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SAEM PARAMETER ESTIMATES

Estimates of the population parameters and the random effects using

RWM SAEM vs Laplace SAEM

RWM vs Laplace SAEM

03-
92
100
s 02
8 H g
£ £ s
> < @
50
84 o
80 3
] 0 10 150 0 s 100 150 o 50 100 150
iteration iteration iteration
10000 100
60
075
7500
x x g
3 3
g £ g
= 2 @
&
S S g 050
g 8 5000 g
5 5 5
P
025
2500
o 000
o o w0 1o o s 0 1o o s 10 150
iteration iteration iteration

F1GURE: Estimates for 100 replicates
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APPLICATIONS

Thank you
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