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ABSTRACT

Modeling visual question answering (VQA) through scene
graphs can significantly improve the reasoning accuracy and
interpretability. However, existing models answer poorly
for complex reasoning questions with attributes or relations,
which causes false attribute selection or missing relation
in Figure 1(a). It is because these models cannot balance
all kinds of information in scene graphs, neglecting rela-
tion and attribute information. In this paper, we introduce
a novel Dual Message-passing enhanced Graph Neural Net-
work (DM-GNN), which can obtain a balanced represen-
tation by properly encoding multi-scale scene graph infor-
mation. Specifically, we (i) transform the scene graph into
two graphs with diversified focuses on objects and relations;
Then we design a dual structure to encode them, which in-
creases the weights from relations (ii) fuse the encoder out-
put with attribute features, which increases the weights from
attributes; (iii) propose a message-passing mechanism to en-
hance the information transfer between objects, relations and
attributes. We conduct extensive experiments on datasets in-
cluding GQA, VG, motif-VG and achieve new state of the art.

Index Terms— Scene Graph, Visual Question Answer,
Graph Neural Network

1. INTRODUCTION

VQA tasks require a model to answer a free-form natural
language question using visual information from an image.
Scene graph (SG) reasoning is an essential instance of VQA
tasks [1]. The model extracts objects’ names, attributes, and
relations from the input images and organizes them into a
graph representation to generate the scene graph.

SG representation modeling displays several virtues over
classical VQA techniques since the features in SG are pre-
sented in plain and free text form [2] and the graph struc-
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Fig. 1. (a) Two key issues of traditional scene graph based
models that we address: false attribute selection (top: select
attribute “black” instead of attribute “off”) and missing rela-
tion (bottom: missing “Behind”) (b) Overview of our DM-
GNN model. FN and FE are the object feature map and the
relation feature map. F is the full-scale feature map.

tures of SG have better interpretability [3]. In this contribu-
tion, two reasoning methods on scene graphs are proposed: (i)
consider scene graphs as probabilistic graphs and iteratively
update nodes’ probabilities using soft instructions extracted
from questions [4]; (ii) apply Graph Neural Network (GNN)
into scene graphs [5, 6] to learn joint representations of nodes
and their relations, and then feed these representations into
a predictor to get the answer. Scene graph reasoning frame-
works are useful in VQA [7]. However, there still remain
imperfections dealing with complex reasoning questions.

First, existing models tend to predict wrong answers for
complex reasoning questions with attributes. Consider the
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Fig. 2. Model structure of the Dual Message-passing enhanced Graph Neural Networks. MP stands for the message-passing
module. Images are transformed into scene graphs by the scene graph generator. The object-significant form and relation-
significant form of the scene graph are injected into the object encoder and the relation encoder. Nodes’ representations are
generated from the sum of the MP modules. The representations are then fused with question representations to predict answers.

“why” question in Fig. 1(a) as an example, false attribute
selection occurs because the model cannot associate “off” re-
lation with “dark monitor” object. The attribute selections re-
quire comprehensive supervision from objects, relations, and
attributes, but existing methods focus too much on objects
while ignoring attributes. Generally, information from ob-
jects and relations connected to them are reconstructed into
object features in GNN-based methods [8]. However, these
encoding methods lack information from objects’ attributes.
NSM methods [4] use soft instructions to update answer pos-
sibilities, but they treat attributes as secondary information.

Second, existing approaches answer poorly for complex
questions that require information about relations. For in-
stance, for localization questions, as in the “where” type of
questions, in Fig. 1(a), we observe that missing relation oc-
curs because the model cannot capture the relation informa-
tion “Behind”. Existing models have a strong bias towards
object features, while considering relation as references. The
unbalanced focus on objects and relations makes the models
fail to learn discriminative representations for relations.

To improve the balance of all kinds of information in
scene grpahs, we propose the Dual Message-passing en-
hanced Graph Neural Network (DM-GNN) for VQA, intro-
ducing a novel scene graph reasoning model that extracts bal-
anced feature maps from objects, attributes, and relations in-
formation in scene graphs. Concretely, as shown in Fig. 1(b),
our DM-GNN model is composed of a scene graph gener-
ator, a question encoder, dual graph encoders, and a fusion
module. Besides, to balance the importance of objects and re-
lations, we transform scene graphs into a relation-significant
modality, where nodes represent relations and edges represent
objects, and an object-significant modality, in which nodes
represent objects and edges represent relations. After receiv-
ing scene graphs in two modalities, dual graph encoders can
produce feature maps focusing on relations and objects.

Furthermore, to enhance the information transfer between

objects, relations and attributes, we modify the gated graph
neural network (GGNN) structure in our DM-GNN by adding
the message-passing module. It is a bidirectional GRU that
guides the internal information flow. The encoder captures in-
formation from nodes, edges, and adjacent nodes that connect
to them. In Fig. 1(b), the output feature map of the encoder
passes through the fusion module, where the attribute fea-
tures are explicitly modeled into the feature map to increase
the information weight from attributes. Then the feature map
passes through multi-head attention layers using question fea-
tures extracted from the question encoder. Hence, the model
dynamically focuses on the critical parts of the questions and
uses the most similar part of the scene graph as the most ade-
quate answer. Our main contributions are as follows:

• We analyse that existing models answer imperfectly
for complex reasoning questions with attributes or re-
lations due to the unbalance focus on three information
types in scene graphs, which contain objects, relations
and attributes.

• We propose a novel DM-GNN model containing a dual
encoder structure and a message-passing module. Our
model can obtain a balanced representation by properly
encoding multi-scale scene graph information.

• Experimental results on various datasets show that DM-
GNN effectively improves the reasoning accuracy on
semantically complicated questions.

2. RELATED WORK

Visual Question Answering. Most VQA approaches use se-
quential models [9] to encode questions and CNN-based pre-
trained models [10] to encode images. Then they use attention
methods [11, 12] to fuse features from images and questions.
Transformer models [22] achieve outstanding performances



on VQA tasks, yet they are heavy to train and hard to ex-
plain [23]. Instead, the scene graph model stands for an alter-
native that is more lightly and explainable.

Scene Graph Generation and Reasoning. Scene graph gen-
eration (SGG) methods [21] use object detection methods to
extract region proposals from images. Scene graph can pro-
mote explainable reasoning for downstream multimodal tasks
such as VQA [3]. In typical scene graph reasoning models,
NSM [4] performs sequential reasoning over the scene graph
by iteratively traversing its nodes. Other models [5, 6, 24] use
GGNN [25] based model to encode scene graphs. However,
previous works are hard to fully utilize the attribute informa-
tion and learn the comprehensive representation of SG.

Graph Neural Network. GNN [14] is designed to infer on
data described by graphs. [15, 16] apply GNN-based mod-
els on knowledge graphs, which are similar to scene graphs.
However, existing GNN-based models cannot effectively pro-
cess graphs with node attributes and complicated labels. Our
DM-GNN model can learn a comprehensive and balanced
representation using full-scale scene graph information from
objects, attributes, and relations to overcome these problems.

3. DM-GNN METHODOLOGY

Our proposed architecture is illustrated in Fig. 2. We use the
scene graph generator from [19]. In the question encoder, se-
mantic questions are first projected into an embedding space
using GLOVE pretrained word embedding model [17]. Then
we use long short-term memory (LSTM) networks to generate
questions representation q ∈ Rdim, where dim is the dimen-
sion of the question representation. We introduce our dual
graph encoders and fusion module in following subsections.

3.1. Object/Relation-Significant Graph

We organize scene graphs into object-significant graphs and
relation-significant graphs.

Object-Significant Graph. We define the object signifi-
cant graph as Gobj , where each node represents an object in
the image and each edge represents a relation between two
objects. Define N as the node set and E as the edge set. For
ni, nj ∈ N, ek ∈ E, < ni - ek - nj > denotes the relation
tuple that represents relation ek from object ni to object nj .

Relation-Significant Graph. We define relation signif-
icant modality as Grel, where each node represents a rela-
tion between objects in the image and each edge represents an
object, which is completely opposed to the object-significant
modality. For ei, ej ∈ E, nk ∈ N,< ei−nk−ej > represents
the relations ei and ej have a shared object nk.

Attribute types. Define L as attribute types. For each
node ni ∈ N, we define a set of L + 1 property variables{
nli
}L
l=0

, where n0i represents ni’s name embedding and nli
represents the embedding of node ni’s lth attribute.
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Fig. 3. Overview of the pipeline at timestep t. (a) The
message-passing module generates MPin and MPout as in-
cident and output information gains. (b) The propagator uses
information gains and ht−1i to update hti.

3.2. Dual Encoders

We apply two GGNN-based encoders for object significant
graph and relation significant graph. The encoder for object
graph focuses on object features and the encoder for relation
graph focuses on relation features. The dual structure can
balance the importance of relations and objects.

Prior to encoding, every input scene graph is transformed
into an information tuple (N,E,Ain,Aout): N and E are col-
lections of node embeddings and edge embeddings. Ain and
Aout are the adjacency matrix of incident and output edges.

Let hti is the hidden state of node ni in the encoder at
timestep t, then at t = 0, we initialize h0i as the GLOVE em-
bedding of ni with zero padding:

Message-passing Module. To enhance the information
transfer from edges and adjacent nodes to the updating nodes,
we use the message-passing module (MP) in Fig. 3(a). MP
module comes as a replacement of the fully-connected lay-
ers from the original GNN model. Consider a tuple <
ni, ek, nj > as the processing sample of the message-passing
module. The embedding state, noted ek, of the edge ek and
neighbor node nj’s hidden state hj are injected into a bidi-
rectional GRU network as input sequence while the node ni’s
hidden state hi is injected as the GRU’s initial hidden state.
The output of the GRU represents the updating information
for hidden state hi, which corresponds to the key information
from edge ek and node nj that is related to node ni. The
sum of every GRU output is ni’s total information gain from
ni’s adjacent nodes and edges. We detail the message-passing



module formula as follows:

MPi(Ain) =

<ni,ek,nj>∈Ain∑
k,j

GRU([ek, hj ], hi) , (1)

MPi(Aout) =

<nj ,ek,ni>∈Aout∑
k,j

GRU([ek, hj ], hi) , (2)

where MPi(Ain) is ni’s incident information gain, and
MPi(Aout) is ni’s output information gain.

Propagation Module. In Fig. 3(b), at timestep t, the
hidden states of all nodes are updated by the following gated
propagator module:

kti = [MP t
i (Ain),MP t

i (Aout)] , (3)

where kti is the node ni’s representation from all its incident
edges, output edges and adjacent nodes.

Then, we incorporate information from adjacent nodes
and from the previous timestep leading to an update of each
node’s hidden state:

cti = [h
(t−1)
i , k

(t−1)
i ]W + b , (4)

zti = σ(Uzcti) , (5)

rti = σ(Urcti) , (6)

where W,Uz and Ur are referred to as the trainable weight
matrices. At timestep t, zti and rti are the update and reset
gates, respectively. Then we have:

h̃ti = tanh(U1k
(t−1)
i + U2(r

t
i � h

(t−1)
i )) , (7)

hti = (1− zti)� h
(t−1)
i + zti � h̃ti . (8)

Here, U1 and U2 denote the trainable parameters of the linear
layers, the operator� is the element-wise multiplication. σ is
the ReLU function. After T steps, the encoder generates the
final hidden state map G of the graph. Finally, we compute
the graph embedding gi ∈ G for node ni as follows:

gi = σ(f(hTi , ni)) , (9)

where f(hTi , ni) is multi-layer perceptron (MLP) which re-
ceives the concatenation of hTi and ni.

3.3. Fusion Module and Answer Predictor

Once the dual encoders, embedded in our model, output the
node and relation features, we first fuse the attributes into fea-
ture maps. For node feature mapGN and relation feature map
GE , the fusion feature map FN and FE are defined as

FN
i =


[gNi , n0

i ]

· · · ,
[gNi , nL

i ]

, FE
j = [gEj , ej ], F = [FN , FE ], (10)

where FN
i indicates the fusion features of node i and gNi

is node i’s representation from the encoder. nli is the attribute
embedding of node i. FE

j corresponds to the fusion feature
of edge j. gEj is edge j’s representation from the encoder. ej
is j-th edge original embedding. The full-scale feature map,
noted F , is obtained by concatenating FN and FE .

Then, the question embedding q and the full-scale feature
map F are fed into a multi-head attention layer. The reason-
ing vector, noted r, and which stems from the graph and the
question, is computed using a weighted sum of the feature
map using the scores output from the attention layer,

r = Attention(F, q) . (11)

In answer predictor module, we adopt a two-layer MLP
noted by f(·). This MLP can be viewed as a classifier over the
set of candidate answers. The input of the answer predictor
is the concatenation vector (q, r). Such a classifier has been
applied in many VQA models [4, 11]. The answer â reads:

â = argmax(softmax(f((q, r)))) . (12)

4. EXPERIMENTS
4.1. Empirical Results

Results on VG dataset. Table 1 reports the results on the
test sets of the VG ground truth dataset and the motif-VG
dataset. Compared to the baseline models, we can observe
that our DM-GNN model outperforms the others at 3%-4%.
In addition, we provide detailed results on the VG dataset and
motif-VG dataset with different question types. Compared
to the other scene graph based VQA models, our model per-
forms well in “what”, “where”, “who” and “why” types. On
the VG dataset, our model has 6.5% accuracy improvement
in “why” type questions, which highly requires VQA models’
ability to jointly exploit objects, relations and attributes.

Results on GQA dataset. We report in Table 2 the de-
tailed results on the test sets of the GQA dataset. Our DM-
GNN model outperforms baselines. We also evaluate our
model and other baselines across GQA dataset’s various met-
rics, where “Binary” and “Open” stand for binary-answer and
open domain questions. “Distribution” corresponds to the
distance between prediction distribution and standard answer
distribution. For open domain questions which are difficult
for reasoning, our model outperforms the others by 9.63%.
For distribution metric, our model also achieves 2nd score.
However, the “Binary” question is challenging for DM-GNN
although it achieves SOTA performances. Specifically, the
advantage of DM-GNN is to correctly locate key objects, re-
lations and attributes. That is why it works well for the open
domain (“what, why, how”) questions. But for “yes/no” ques-
tions, whose answers are not explicit in scene graphs, DM-
GNN is easy to locate but hard to correctly answer.



Dataset VG-GroundTruth Motif-VG
Question type What Where Who Why Overall What Where Who Why Overall
Percentage (54%) (17%) (5%) (3%) (100%) (54%) (17%) (5%) (3%) (100%)
NSM [4] 33.1 51.0 49.8 12.3 45.1 31.8 53.1 47.6 10.9 43.1
F-GN [3] 60.9 62.0 63.3 50.9 60.1 58.7 60.4 61.8 49.0 60.0
U-GN [3] 61.6 62.4 63.9 50.3 60.5 59.4 60.3 66.6 48.1 60.5
FSTT [5] 65.5 70.1 68.3 91.5 65.6 48.8 49.2 40.6 70.3 48.1
ReGAT [6] 72.1 64.4 72.7 92.3 71.2 75.4 57.6 69.1 91.8 69.9
DM-GNN (ours) 75.9 73.1 82.6 98.8 75.4 79.4 62.7 72.8 96.1 72.9

Table 1. Performance on different question types of VG dataset.

Models Binary↑ Open↑ Validity↑ Distribution↓ Acc.↑
Human 91.20 87.40 98.90 - 89.30
BottomUp 66.64 34.83 96.18 5.98 49.74
MAC 71.23 38.91 96.16 5.34 54.06
SK T-Brain 77.42 43.10 96.26 7.54 59.19
PVR 77.69 43.01 96.45 5.80 59.27
GRN 77.53 43.35 96.18 6.06 59.37
Dream 77.84 43.72 96.38 8.40 59.72
LXRT 77.76 44.97 96.30 8.31 60.34
NSM 78.94 49.25 96.41 3.71 63.17
ReGAT 83.57 62.58 92.70 9.32 70.50
DM-GNN(ours) 69.79 72.21 93.80 3.78 71.21

Table 2. Performance on the GQA dataset.

Models Acc.
Base 35.4
Base-Obj 35.4
+MP 39.3(+3.9)

+Dual 67.9(+32.7)

Base-Rel 35.2
+MP 38.8(+3.6)

+Dual 67.9(+32.5)

DM-GNN(ours) 75.2
+ (w/o attr) 71.6(−3.6)
+ (w/o rela) 74.5(−0.7)
+ (w/o QF) 54.9(−20.3)

Table 3. Ablation Study on VG.

4.2. Ablation Study

We compare several ablated forms of DM-GNN with our
complete model on the VG dataset. The accuracy for each
variant of DM-GNN are reported in Table 3. We use the raw
GGNN network as the Base model. The Base-Obj and Base-
Rel model represent the original GGNN network processing
object-significant graph and relation-significant graph. The
models with +MP contain the message-passing module. The
models with +Dual apply the dual encoder structure.

Effect of dual encoder structure. We first validate the
efficacy of applying dual structure to balance the importance
of relations and objects by splitting our DM-GNN into two
single models (Base-Obj and Base-Rel). Both single models
perform poorly at 35.3% ± 0.1%. This also shows that both
relations and objects are vital to VQA performance. Absence
of any of those modules leads to severe accuracy recession.
Adding dual encoder structure (+Dual) leads to an empirical
gain of 32.6% accuracy upward, which shows that the dual
structure is significant in balancing relations and objects.

Effect of the message-passing module. We validate the
effectiveness of applying message-passing structure to learn
a more comprehensive representation for scene graphs than
the raw GGNN structure. Comparing with the Base-Obj
and +MP model, we note that after adding the message-
passing structure, there is an improvement of 3.9%. Com-
paring with the Base-Rel and +MP model, we observe an im-
provement of 3.6%. The +Dual model is DM-GNN without
message-passing module. Comparing with DM-GNN, there

is a 7.3% improvement after adding the message-passing
module. These empirical results show that message-passing
structure can successfully improve the representation quality
of scene graphs.

Effect of explicit modeling. The w/o attr model and the
w/o rela model remove the explicit attribute modeling and re-
lation modeling part. Comparing w/o attr, w/o rela with DM-
GNN, removing attribute modeling has a 3.6% decrease in
accuracy and removing relation modeling has 0.7% decrease.

4.3. Visualization
Fig. 4 (a) shows visualization on “what” question type.

Three “what” question examples aimed at retrieving either
object, relation or attribute information. Comparing row 1,
row 2 with row 3, Obj and Rel models have strong attention
bias toward objects and relations, while their combination
Obj+Rel, balances the attention on both sides and captures
correct answers. Comparing row 3 with row 4, the message-
passing module increases the score of correct answers.

Fig. 4 (b) shows the visualization on “why”, which need
models to jointly exploit objects, relations and attributes to
infer answers. With dual encoders and the message-passing
module, our DM-GNN achieves 96.1% on “why” questions.

5. CONCLUSION

We propose DM-GNN, which encodes each scene graph into
feature representations via an object encoder and a relation
encoder generating a balanced and full-scale feature map us-
ing objects, attributes, and relations information, and demon-
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Why is all the food 
on the wooden table?

Base: On the plate
Ours: To eat
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motionless?
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Fig. 4. Examples of generated answers and top attention scores. Answers in red means wrong and green means right. (a) and
(b) show the visualization of “what” and “why” question types. From (a), we observe that our approach can correctly select
answer from objects, relations and attributes. From (b), we note that our model can handle comprehensive reasoning questions.

strate our model can effectively boost performances on GQA,
VG and Motif-VG datasets .
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