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Abstract

1Adaptive gradient methods including Adam, AdaGrad, and their variants have been very suc-
cessful for training deep learning models, such as neural networks. Meanwhile, given the need
for distributed computing, distributed optimization algorithms are rapidly becoming a focal
point. With the growth of computing power and the need for using machine learning models on
mobile devices, the communication cost of distributed training algorithms needs careful consid-
eration. In this paper, we introduce novel convergent decentralized adaptive gradient methods
and rigorously incorporate adaptive gradient methods into decentralized training procedures.
Specifically, we propose a general algorithmic framework that can convert existing adaptive
gradient methods to their decentralized counterparts. In addition, we thoroughly analyze the
convergence behavior of the proposed algorithmic framework and show that if a given adaptive
gradient method converges, under some specific conditions, then its decentralized counterpart is
also convergent. We illustrate the benefit of our generic decentralized framework on a prototype
method, i.e., AMSGrad, both theoretically and numerically.

1The work of Xiangyi Chen was conducted while he was an intern at Baidu Research – Bellevue in Summer 2019.
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1 Introduction

Distributed training of machine learning models has been drawing growing attention in the past few
years due to its practical benefits and necessities. Given the evolution of computing capabilities of
CPUs and GPUs, computation time in distributed settings is gradually dominated by the commu-
nication time in many circumstances (Chilimbi et al., 2014; McMahan et al., 2017). As a result, a
large number of recent works have been focusing on reducing communication cost for distributed
learning (Alistarh et al., 2017; Lin et al., 2018; Wangni et al., 2018; Stich et al., 2018; Wang et al.,
2018; Tang et al., 2019). In the traditional parameter (central) server setting, where a parameter
server is employed to manage communication in the whole network (Zhao et al., 2020), many effec-
tive communication reductions have been proposed based on gradient compression (Aji and Heafield,
2017) and quantization (Chen et al., 2010; Jégou et al., 2011; Ge et al., 2013; Xu et al., 2021) tech-
niques. Despite these communication reduction techniques, its cost still, usually, scales linearly
with the number of workers. Due to this limitation and with the sheer size of decentralized devices,
the decentralized training paradigm (Duchi et al., 2012), where the parameter server is removed
and each node only communicates with its neighbors, is drawing attention. It has been shown
in Lian et al. (2017) that decentralized training algorithms can outperform parameter server-based
algorithms when the training bottleneck is the communication cost. The decentralized paradigm is
also preferred when a central parameter server is not available.

In light of recent advances in nonconvex optimization, an effective way to accelerate training
is by using adaptive gradient methods like AdaGrad (Duchi et al., 2011), Adam (Kingma and Ba,
2015) or AMSGrad (Reddi et al., 2018). Their popularity are due to their practical benefits in
training neural networks, featured by faster convergence and ease of parameter tuning compared with
Stochastic Gradient Descent (SGD) (Robbins and Monro, 1951). Despite a large number of studies
within the distributed optimization literature, few works have considered bringing adaptive gradient
methods into distributed training, largely due to the lack of understanding of their convergence
behaviors. Notably, Reddi et al. (2021) develop a decentralized ADAM method for distributed
optimization problems with a direct application to federated learning. An inner loop is employed to
compute mini-batch gradients on each node and a global adaptive step is applied to update the global
parameter at each outer iteration. Yet, in the settings of our paper, nodes can only communicate to
their neighbors on a fixed communication graph while a server/worker communication is required
in Reddi et al. (2021). Designing adaptive methods in such settings is highly non-trivial due to the
already complex update rules and to the interaction between the effect of using adaptive learning
rates and the decentralized communication protocols. This paper is an attempt at bridging the gap
between both realms in nonconvex optimization. Our contributions are summarized as follows:

• We investigate the use of adaptive gradient methods in the decentralized training paradigm,
where nodes have only a local view of the whole communication graph. We develop a gen-
eral technique that converts an adaptive gradient method from a centralized method to its
decentralized variant and highlight the importance of adaptive learning rate consensus.

• By using our proposed technique, we present a new decentralized optimization algorithm,
called decentralized AMSGrad, as the decentralized counterpart of AMSGrad.

• We provide a theoretical verification interface, in Theroem 2, for analyzing the behavior of
decentralized adaptive gradient methods obtained as a result of our technique. Thus, we
characterize the convergence rate of decentralized AMSGrad, which is the first convergent
decentralized adaptive gradient method, to the best of our knowledge.

2



The paper is organized as follows. In Section 2, we show the importance of adaptive learning rate
consensus by proving a divergent example for a recently proposed decentralized adaptive gradi-
ent method, DADAM (Nazari et al., 2019). In Section 3, we develop our general framework for
converting adaptive gradient methods into their decentralized counterparts along with convergence
analysis and converted algorithms. Illustrative experiments are presented in Section 4. Section 5
concludes our work.

Notations: xt,i denotes variable x at node i and iteration t. ‖ · ‖abs denotes the entry-wise L1

norm of a matrix, i.e., ‖A‖abs =
∑

i,j |Ai,j|. We introduce important notations used throughout the
paper: for any t > 0, Gt := [gt,N ] where [gt,N ] denotes the matrix [gt,1, gt,2, · · · , gt,N ] (where gt,i is a

column vector), Mt := [mt,N ], Xt := [xt,N ], ∇f(Xt) :=
1
N

∑N
i=1∇fi(xt,i), Ut := [ut,N ], Ũt := [ũt,N ],

Vt := [vt,N ], V̂t := [v̂t,N ], Xt :=
1
N

∑N
i=1 xt,i, U t :=

1
N

∑N
i=1 ut,i and Ũt :=

1
N

∑N
i=1 ũt,i.

2 Decentralized Adaptive Training and Divergence of DADAM

2.1 Related Work

Decentralized optimization. Traditional decentralized optimization methods include well-know
algorithms such as ADMM (Boyd et al., 2011), Dual Averaging (Duchi et al., 2012), Distributed
Subgradient Descent (Nedic and Ozdaglar, 2009). More recent algorithms include Extra (Shi et al.,
2015), Next (Lorenzo and Scutari, 2016), Prox-PDA (Hong et al., 2017), GNSD (Lu et al., 2019),
and Choco-SGD (Koloskova et al., 2019). While these algorithms are commonly used in applica-
tions other than deep learning, recent algorithmic advances in the machine learning community have
shown that decentralized optimization can also be useful for training deep models such as neural
networks. Lian et al. (2017) demonstrate that a stochastic version of Decentralized Subgradient
Descent can outperform parameter server-based algorithms when the communication cost is high.
Tang et al. (2018) propose the D2 algorithm improving the convergence rate over Stochastic Sub-
gradient Descent. Assran et al. (2019) propose the Stochastic Gradient Push that is more robust to
network failures for training neural networks. The study of decentralized training algorithms in the
machine learning community is only at its initial stage. No existing work, to our knowledge, has seri-
ously considered integrating adaptive gradient methods in the setting of decentralized learning. One
noteworthy work (Nazari et al., 2019) proposes a decentralized version of AMSGrad (Reddi et al.,
2018) and it is proven to satisfy some non-standard regret.

Adaptive gradient methods. Adaptive gradient methods have been popular in recent years due
to their superior performance in training neural networks. Most commonly used adaptive methods
include AdaGrad (Duchi et al., 2011) or Adam (Kingma and Ba, 2015) and their variants. Key
features of such methods lie in the use of momentum and adaptive learning rates (which means
that the learning rate is changing during the optimization and is anisotropic, i.e., depends on the
dimension). The method of reference, called Adam, has been analyzed in Reddi et al. (2018) where
the authors point out an error in previous convergence analyses. Since then, a variety of papers have
been focusing on analyzing the convergence behavior of the numerous existing adaptive gradient
methods. Ward et al. (2019), Li and Orabona (2019) derive convergence guarantees for a variant
of AdaGrad without coordinate-wise learning rates. Chen et al. (2019) analyze the convergence
behavior of a broad class of algorithms including AMSGrad and AdaGrad. Zhou et al. (2018) give
a more refined analysis of AMSGrad with better convergence rate. Zou and Shen (2018) provide
a unified convergence analysis for AdaGrad with momentum. Noticeable recent works on adaptive
gradient methods can be found in Agarwal et al. (2019); Luo et al. (2019); Zaheer et al. (2018).
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2.2 Decentralized Optimization

In distributed optimization (with N nodes), we aim at solving the following problem

min
x∈Rd

1

N

N∑

i=1

fi(x) , (1)

where x is the vector of parameters and fi is only accessible by the i-th node. Through the prism
of empirical risk minimization procedures, fi can be viewed as the average loss of the data samples
located at node i, for i ∈ [N ]. Throughout the paper, we make the following mild assumptions re-
quired for analyzing the convergence behavior of the different decentralized optimization algorithms
introduced above:

A1. For all i ∈ [N ], fi is differentiable and the gradients are L-Lipschitz, i.e., for all (x, y) ∈ R
d,

‖∇fi(x)−∇fi(y)‖ ≤ L‖x− y‖.

A2. We assume that, at iteration t, node i accesses a stochastic gradient gt,i. The stochastic gradients
and the gradients of fi have bounded L∞ norms, i.e., ‖gt,i‖ ≤ G∞, ‖∇fi(x)‖∞ ≤ G∞.

A3. The gradient estimators are unbiased and each coordinate has bounded variance, i.e., E[gt,i] =
∇fi(xt,i) and E[([gt,i − fi(xt,i)]j)

2] ≤ σ2,∀t, i, j .

Assumptions A1 and A3 are standard in the distributed optimization literature. A2 is slightly
stronger than the traditional assumption stating that the estimator has bounded variance, yet, it is
commonly used for the analysis of adaptive gradient methods (Chen et al., 2019; Ward et al., 2019).
Note that the bounded gradient estimator assumption A2 implies the bounded variance assumption
A3. In decentralized optimization, the nodes are connected as a graph and each node only commu-
nicates to its neighbors. Hence, one usually constructs an N ×N matrix W for information sharing
when designing new training algorithms. We denote by λi its i-th largest eigenvalue and define
λ , max(|λ2|, |λN |). The matrix W cannot be arbitrary, its required key properties are listed in
the following assumption:

A4. The matrix W satisfies: (i)
∑N

j=1Wi,j = 1,
∑N

i=1 Wi,j = 1, Wi,j ≥ 0, (ii) λ1 = 1, |λ2| < 1,
|λN | < 1 and (iii) Wi,j = 0 if node i and node j are not neighbors.

We now present the convergence failure of current decentralized adaptive method before intro-
ducing our general framework for decentralized adaptive gradient methods.

2.3 Divergence of DADAM

Recently, Nazari et al. (2019) initiated an attempt to bring adaptive gradient methods into decen-
tralized optimization with Decentralized ADAM (DADAM), shown in Algorithm 1. DADAM is
essentially a decentralized version of ADAM and the key modification is the use of a consensus step
on the optimization variable x to transmit information across the network, encouraging its conver-
gence.
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Algorithm 1 DADAM (with N nodes)

1: Input: α, current point Xt, u 1

2
,i = v̂0,i = ǫ1, m0 = 0 and mixing matrix W

2: for t = 1, 2, · · · , T do

3: for all i ∈ [N ] do in parallel

4: gt,i ← ∇fi(xt,i) + ξt,i
5: mt,i = β1mt−1,i + (1− β1)gt,i
6: vt,i = β2vt−1,i + (1− β2)g

2
t,i

7: v̂t,i = β3v̂t,i + (1− β3)max(v̂t−1,i, vt,i)

8: xt+ 1

2
,i =

∑N
j=1Wijxt,j

9: xt+1,i = xt+ 1

2
,i − α

mt,i√
v̂t,i

10: end for

The matrix W is a doubly stochastic matrix (which satisfies A4) employed for achieving average
consensus of x. Introducing such mixing matrix is standard while designing the extension of an
algorithm to its decentralized variant, such as distributed gradient descent (Nedic and Ozdaglar,
2009; Yuan et al., 2016). It is proven in Nazari et al. (2019) that DADAM admits a non-standard
regret bound in the online setting. Nevertheless, whether the algorithm can converge to stationary
points in standard offline settings such training neural networks is still unknown. The next theorem
shows that DADAM may fail to converge in the offline settings.

Theorem 1. There exists a problem satisfying A1-A4 where DADAM fails to converge to a station-
ary points with ∇f(X̄t) = 0.

Proof. Consider a two-node setting with objective function f(x) = 1/2
∑2

i=1 fi(x) and f1(x) =
1[|x| ≤ 1]2x2 +1[|x| > 1](4|x| − 2), f2(x) = 1[|x− 1| ≤ 1](x− 1)2 +1[|x− 1| > 1](2|x− 1| − 1). We
set the mixing matrix W = [0.5, 0.5; 0.5, 0.5]. The optimal solution is x∗ = 1/3. Both f1 and f2 are
smooth and convex with bounded gradient norm 4 and 2, respectively. We also have L = 4 (defined
in A1). If we initialize with x1,1 = x1,2 = −1 and run DADAM with β1 = β2 = β3 = 0 and ǫ ≤ 1,
we will get v̂1,1 = 16 and v̂1,2 = 4. Since |gt,1| ≤ 4, |gt,2| ≤ 2 due to bounded gradient, and (v̂t,1, v̂t,2)
are non-decreasing, we have v̂t,1 = 16, v̂t,2 = 4,∀t ≥ 1. Thus, after t = 1, DADAM is equivalent
to running decentralized gradient descent (D-PSGD) (Yuan et al., 2016) with a re-scaled f1 and f2,
i.e., running D-PSGD on f ′(x) =

∑2
i=1 f

′
i(x) with f ′

1(x) = 0.25f1(x) and f ′
2(x) = 0.5f2(x), which

unique optimal x′ = 0.5. Define x̄t = (xt,1 + xt,2)/2, then by Theorem 2 in Yuan et al. (2016), we
have when α < 1/4, f ′(x̄t)− f(x′) = O(1/(αt)). Since f ′ has a unique optima x′, the above bound
implies x̄t is converging to x′ = 0.5 which has non-zero gradient on function ∇f(0.5) = 0.5.

Theorem 1 shows that, even though DADAM is proven to satisfy some regret bounds (Nazari et al.,
2019), it can fail to converge to stationary points in the nonconvex offline setting (common for train-
ing neural networks). We conjecture that this inconsistency in the convergence behavior of DADAM
is due to the definition of the regret in Nazari et al. (2019). We want to remark that this is not the
first time adaptive gradient methods are found to be divergent. For example, Reddi et al. (2018)
constructs examples showing that ADAM is divergent and Chen et al. (2020) exhibits a naive appli-
cation of adaptive gradient methods under the federated learning settings that can potentially fail
to converge. All these examples contribute to our motivation to rigorously study the convergence
of adaptive gradient methods in the decentralized setting. The next section presents decentralized
adaptive gradient methods that are guaranteed to converge to stationary points under assump-
tions and provide a characterization of that convergence in finite-time and independently of the
initialization.
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3 On the Convergence of Decentralized Adaptive Gradient Meth-

ods

In this section, we discuss the difficulties of designing adaptive gradient methods in decentralized
optimization and introduce an algorithmic framework that can turn existing convergent adaptive
gradient methods into their decentralized counterparts. We also develop the first convergent decen-
tralized adaptive gradient method, converted from AMSGrad, as an instance of this framework.

3.1 Importance and Difficulties of Consensus on Adaptive Learning Rates

The divergent example provided in the previous section implies that one should synchronize the
adaptive learning rates on different nodes. This can easily be achieved in the parameter server
setting where all the nodes are sending their gradients to a central server at each iteration. The
parameter server can then exploit the received gradients to maintain a sequence of synchronized
adaptive learning rates when updating the parameters, see Reddi et al. (2021) for further details.
However, in our decentralized setting, every node can only communicate with its neighbors and
such central server does not exist. Under that setting, the information for updating the adaptive
learning rates can only be shared locally instead of broadcasted over the whole network. This makes
it impossible to obtain, in a single iteration, a synchronized adaptive learning rate update using all
the information in the network.

Systemic Approach: On a systemic level, one way to alleviate this bottleneck is to design com-
munication protocols in order to give each node access to the same aggregated gradients over the
whole network, at least periodically if not at every iteration. Therefore, the nodes can update their
individual adaptive learning rates based on the same shared information. However, such solution
may introduce an extra communication cost since it involves broadcasting the information over the
whole network.

Algorithmic Approach: Our contributions being on an algorithmic level, another way to solve the
aforementioned problem is by letting the sequences of adaptive learning rates, present on different
nodes, to gradually consent, through the iterations. Intuitively, if the adaptive learning rates can
consent fast enough, the difference among the adaptive learning rates on different nodes will not
affect the convergence behavior of the algorithm. Consequently, no extra communication costs need
to be introduced. We now develop this exact idea within the existing adaptive methods stressing
on the need for a relatively low-cost and easy-to-implement consensus of adaptive learning rates.

Below is main archetype of the adaptive rates consensus mechanism within a decentralized
framework that we propose in this paper.

3.2 Unifying Decentralized Adaptive Gradient Framework

While each node can have different v̂t,i in DADAM (Algorithm 1), one can keep track of the
min/max/average of these adaptive learning rates and use that latter quantity as the new adap-
tive learning rate. The upstream definition of some convergent lower and upper bounds may also
lead to a gradual synchronization of the adaptive learning rates on different nodes as developed for
AdaBound in Luo et al. (2019).
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Algorithm 2 Decentralized Adaptive Gradient Method (with N nodes)

1: Input: α, initial point x1,i = xinit, u 1

2
,i = v̂0,i,m0,i = 0, mixing matrix W

2: for t = 1, 2, · · · , T do

3: for all i ∈ [N ] do in parallel

4: gt,i ← ∇fi(xt,i) + ξt,i
5: mt,i = β1mt−1,i + (1− β1)gt,i
6: v̂t,i = rt(g1,i, · · · , gt,i)
7: xt+ 1

2
,i =

∑N
j=1Wijxt,j

8: ũt,i =
∑N

j=1Wij ũt− 1

2
,j

9: ut,i = max(ũt,i, ǫ)
10: xt+1,i = xt+ 1

2
,i − α

mt,i√
ut,i

11: ũt+ 1

2
,i = ũt,i − v̂t−1,i + v̂t,i

12: end for

In this paper, we present an algorithm framework for decentralized adaptive gradient methods
as Algorithm 2, which uses average consensus of v̂t,i (see consensus update in line 8 and 11) to
help convergence. Algorithm 2 can become different adaptive gradient methods by specifying rt as
different functions. E.g., when we choose v̂t,i =

1
t

∑t
k=1 g

2
k,i , Algorithm 2 becomes a decentralized

version of AdaGrad. When one chooses v̂t,i to be the adaptive learning rate for AMSGrad, we
get decentralized AMSGrad (Algorithm 3). The intuition of using average consensus is that for
adaptive gradient methods such as AdaGrad or Adam, v̂t,i approximates the second moment of the
gradient estimator, the average of the estimations of those second moments from different nodes is
an estimation of second moment on the whole network. Also, this design will not introduce any
extra hyperparameters that can potentially complicate the tuning process (ǫ in line 9 is important
for numerical stability as in vanilla Adam). The following result gives a finite-time convergence rate
for our framework described in Algorithm 2.

Theorem 2. Assume A1-A4. When α ≤ ǫ0.5

16L , Algorithm 2 yields the following regret bound

1

T

T∑

t=1

E





∥
∥
∥
∥
∥

∇f(Xt)

U
1/4

t

∥
∥
∥
∥
∥

2


 ≤ C1

(
1

Tα
(E[f(Z1)]−min

x
f(x)) + α

dσ2

N

)

+ C2α
2d

+ C3α
3d+

1

T
√
N

(C4 + C5α)E

[
T∑

t=1

‖(−V̂t−2 + V̂t−1)‖abs
]

(2)

where ‖ · ‖abs denotes the entry-wise L1 norm of a matrix (i.e ‖A‖abs =
∑

i,j |Aij |). The constants

C1 = max(4, 4L/ǫ), C2 = 6((β1/(1− β1))
2 + 1/(1 − λ)2)LG2

∞/ǫ1.5, C3 = 16L2(1− λ)G2
∞/ǫ2, C4 =

2/(ǫ1.5(1−λ))(λ+β1/(1−β1))G2
∞, C5 = 2/(ǫ2(1−λ))L(λ+β1/(1−β1))G2

∞+4/(ǫ2(1−λ))LG2
∞ are

independent of d, T and N . In addition, 1
N

∑N
i=1

∥
∥xt,i −X t

∥
∥
2 ≤ α2

(
1

1−λ

)2
dG2

∞
1
ǫ which quantifies

the consensus error.
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In addition, one can specify α to show convergence in terms of T , d, and N . An immediate
result, shown in Corollary 2.1, is by setting α =

√
N/
√
Td:

Corollary 2.1. Assume A1-A4. Set α =
√
N/
√
Td. When α ≤ ǫ0.5

16L , Algorithm 2 yields:

1

T

T∑

t=1

E





∥
∥
∥
∥
∥

∇f(Xt)

U
1/4

t

∥
∥
∥
∥
∥

2


 ≤ C1

√
d√

TN

(

(E[f(Z1)]−min
x

f(x)) + σ2

)

+ C2

N

T

+ C3

N1.5

T 1.5d0.5
+

(

C4

1

T
√
N

+ C5

1

T 1.5d0.5

)

E [VT ] (3)

where VT :=
∑T

t=1 ‖(−V̂t−2 + V̂t−1)‖abs and C1, C2, C3, C4, C5 are defined in Theorem 2.

Corollary 2.1 indicates that if E[VT ] = o(T ) and Ūt is bounded from above, then Algorithm 2 is
guaranteed to converge to stationary points of the loss function. Intuitively, this means that if the
adaptive learning rates on different nodes do not change too fast, the algorithm can converge. In
convergence analysis, the term E[VT ] upper bounds the total bias in update direction caused by the
correlation between mt,i and v̂t,i. It is shown in Chen et al. (2019) that when N = 1, E[VT ] = Õ(d)
for AdaGrad and AMSGrad. Besides, E[VT ] = Õ(Td) for Adam which do not converge. Later, we
will show convergence of decentralized versions of AMSGrad and AdaGrad by bounding this term
as O(Nd) and O(Nd log(T )), respectively. Corollary 2.1 also conveys the benefits of using more
nodes in the graph employed. When T is large enough such that the term O(

√
d/
√
TN) dominates

the right hand side of (3), then linear speedup can be achieved by increasing the number of nodes
N .

Another point worth discussion is the choice of W since the convergence rate depends on λ
which is depedent on W . A common way to set W for undirected graph is the maximum-degree
method (MDM) in Boyd et al. (2004). Denote di as degree of vertex i and dmax = maxi di, MDM
sets Wi,i = 1−di/dmax, Wi,j = 1/dmax if i 6= j and (i, j) is an edge, and Wi,j = 0 otherwise. This W
ensures Assumption A4 for many common connected graph types, so does the variant γI+(1−γ)W
for any γ ∈ [0, 1). A more refined choice of W coupled with a comprehensive discussion on λ
in our Theorem 2 can be found in Boyd et al. (2009), e.g., 1 − λ = O(1/N2) for cycle graphs,
1 − λ = O(1/ log(N)) for hypercube graphs, λ = 0 for fully connected graph. Intuitively, λ can be
close to 1 for sparse graphs and to 0 for dense graphs. This is consistent (2), whose RHS is large
for λ close to 1 and small for λ close to 0 since average consensus on sparser graphs is expected to
take longer time.

3.3 Application to AMSGrad algorithm

We now present, in Algorithm 3, a notable special case of our algorithmic framework, namely
Decentralized AMSGrad, which is a decentralized variant of AMSGrad. Compared with DADAM,
the above algorithm exhibits a dynamic average consensus mechanism to keep track of the average
of {v̂t,i}Ni=1, stored as ũt,i on i-th node, and uses ut,i := max(ũt,i, ǫ) for updating the adaptive
learning rate for i-th node. As the number of iteration grows, even though v̂t,i on different nodes

can converge to different constants, the ut,i will converge to the same number lim
t→∞

1
N

∑N
i=1 v̂t,i if

the limit exists.
This average consensus mechanism enables the consensus of adaptive learning rates on different

nodes, which accordingly guarantees the convergence of the method to stationary points. The
consensus of adaptive learning rates is the key difference between decentralized AMSGrad and
DADAM and is the reason why decentralized AMSGrad is convergent while DADAM is not.

8



Algorithm 3 Decentralized AMSGrad (N nodes)

1: Input: learning rate α, initial point x1,i = xinit, u 1

2
,i = v̂0,i = ǫ1 (with ǫ ≥ 0),m0,i = 0, mixing

matrix W
2: for t = 1, 2, · · · , T do

3: for all i ∈ [N ] do in parallel

4: gt,i ← ∇fi(xt,i) + ξt,i
5: mt,i = β1mt−1,i + (1− β1)gt,i
6: vt,i = β2vt−1,i + (1− β2)g

2
t,i

7: v̂t,i = max(v̂t−1,i, vt,i)

8: xt+ 1

2
,i =

∑N
j=1Wijxt,j

9: ũt,i =
∑N

j=1Wij ũt− 1

2
,j

10: ut,i = max(ũt,i, ǫ)
11: xt+1,i = xt+ 1

2
,i − α

mt,i√
ut,i

12: ũt+ 1

2
,i = ũt,i − v̂t−1,i + v̂t,i

13: end for

One may notice that decentralized AMSGrad does not reduce to AMSGrad for N = 1 since
the quantity ut,i in line 10 is calculated based on vt−1,i instead of vt,i. This design encourages the
execution of gradient computation and communication in a parallel manner. Specifically, line 4-7
(line 4-6) in Algorithm 3 (Algorithm 2) can be executed in parallel with line 8-9 (line 7-8) to overlap
communication and computation time. If ut,i depends on vt,i which in turn depends on gt,i, the
gradient computation must finish before the consensus step of the adaptive learning rate in line 9.
This can slow down the running time per-iteration of the algorithm. To avoid such delayed adaptive
learning, adding ũt− 1

2
,i = ũt,i − v̂t−1,i + v̂t,i before line 9 and getting rid of line 12 in Algorithm 2

is an option. Similar convergence guarantees will hold since one can easily modify our proof of
Theorem 2 for such update rule. As stated above, Algorithm 3 converges, with the following rate:

Theorem 3. Assume A1-A4. Set α = 1/
√
Td. When α ≤ ǫ0.5

16L , then Algorithm 3 satisfies:

1

T

T∑

t=1

E





∥
∥
∥
∥
∥

∇f(Xt)

U
1/4
t

∥
∥
∥
∥
∥

2


 ≤ C ′
1

√
d√

TN

(
Df + σ2

)
+ C ′

2

N

T
+ C ′

3

N1.5

T 1.5d0.5
+ C ′

4

√
Nd

T
+ C ′

5

Nd0.5

T 1.5
,

where Df := E[f(Z1)]−minx f(x), C
′
1 = C1, C

′
2 = C2, C

′
3 = C3, C

′
4 = C4G

2
∞ and C ′

5 = C5G
2
∞.

C1, C2, C3, C4, C5 are independent of d, T and N defined in Theorem 2. In addition, the consensus

of variables at different nodes is given by 1
N

∑N
i=1

∥
∥xt,i −X t

∥
∥
2 ≤ N

T

(
1

1−λ

)2
G2

∞
1
ǫ .

Theorem 3 shows that Algorithm 3 converges with a rate of O(
√
d/
√
T ) when T is large, which is

the best known convergence rate under the given assumptions. Note that in some related works, SGD
admits a convergence rate of O(1/

√
T ) without any dependence on the dimension of the problem.

Such improved convergence rate is derived under the assumption that the gradient estimator have a
bounded L2 norm, which can thus hide a dependency of

√
d in the final convergence rate. Another

remark is the convergence measure can be converted to 1
T

∑T
t=1 E

[∥
∥∇f(Xt)

∥
∥
2
]

using the fact that

‖U t‖∞ ≤ G2
∞ (by update rule of Algorithm 3), for the ease of comparison with existing literature.
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Proof Sketch of Theorem 2: The detailed proofs are reported in the appendix of this paper.

Step 1: Reparameterization. Similarly to Yan et al. (2018); Chen et al. (2019) with SGD (with
momentum) and centralized adaptive gradient methods, define the following auxiliary sequence:
Zt = Xt +

β1

1−β1
(Xt −X t−1) , with X0 , X1. Such an auxiliary sequence can help us deal with the

bias brought by the momentum and simplifies the convergence analysis.

Step 2: Bounding gradient. With the help of Zt, we can remove the complicated update
dependence on mt, and perform convergence analysis to bound gradient of Zt. Then bound gradient
of Xt by smoothness of gradient, which yields:

1

T

T∑

t=1

E





∥
∥
∥
∥
∥

∇f(Xt)

U
1/4
t

∥
∥
∥
∥
∥

2


 ≤ 2

Tα
E[∆f ] +

2

T

β1D1

1− β1
+

2D2

T
+

3D3

T
+

L

Tα

T∑

t=1

E
[
‖Zt+1 − Zt‖2

]
, (4)

where ∆f := E[f(Z1)] − E[f(ZT+1)] D1,D2 and D3 are three terms, defined in Appendix B, and
can be tightly bounded from above. We first bound D3 using the following quantities of interest:

T∑

t=1

∥
∥Zt −Xt

∥
∥
2 ≤ T

(
β1

1− β1

)2

α2d
G2

∞
ǫ

and

T∑

t=1

1

N

N∑

i=1

∥
∥xt,i −X t

∥
∥
2 ≤ Tα2

(
1

1− λ

)2

dG2
∞
1

ǫ
.

where λ = max(|λ2|, |λN |) and recall that λi is i-th largest eigenvalue of W .

Then, bounding D1 and D2 give rise to the terms related to E

[
∑T

t=1 ‖(−V̂t−2 + V̂t−1)‖abs
]

.

Step 3: Bounding the drift term variance. An important term that needs upper bounding in
our proof is the variance of the gradients multiplied (element-wise) by the adaptive learning rate,

E

[∥
∥
∥

1
N

∑N
i=1

gt,i√
ut,i

∥
∥
∥

2
]

≤ E[‖Γf
u‖2] + d

N
σ2

ǫ , where Γf
u := 1/N

∑N
i=1∇fi(xt,i)/

√
ut,i. We can then

transform E[‖Γf
u‖2] into E[‖Γf

U
‖2] by splitting out two error terms, then bounding the error terms

as operated for D2 and D3. Then, by plugging it into (4), we obtain the desired bound in Theorem 2.

Proof of Theorem 3: Recall the bound in (3) of Theorem 2. Since Algorithm 3 is a special
case of Algorithm 2, the remaining of the proof consists of characterizing the growth rate of
E[
∑T

t=1 ‖(−V̂t−2 + V̂t−1)‖abs]. By construction, V̂t is non decreasing, so that E[
∑T

t=1 ‖(−V̂t−2 +

V̂t−1)‖abs] = E[
∑N

i=1

∑d
j=1(−[v̂0,i]j + [v̂T−1,i]j)]. We can also prove |[vt,i]j| ≤ G2

∞ using ‖gt,i‖∞ ≤
G∞. Then we have E

[
∑T

t=1 ‖(−V̂t−2 + V̂t−1)‖abs
]

≤
∑N

i=1

∑d
j=1 E[G

2
∞] = NdG2

∞. Substituting

into (3) yields the desired convergence bound for Algorithm 3.

3.4 Application to AdaGrad algorithm

In this section, we provide a decentralized version of AdaGrad (Duchi et al., 2011) (optionally with
momentum) converted by Algorithm 2, further supporting the usefulness of our decentralization
framework. The required modification for decentralized AdaGrad is to specify line 4 of Algorithm 2
as follows: v̂t,i =

t−1
t v̂t−1,i +

1
t g

2
t,i, which is equivalent to v̂t,i =

1
t

∑t
k=1 g

2
k,i. In this section, we call

this algorithm decentralized AdaGrad.
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Algorithm 4 Decentralized AdaGrad (with N nodes)

1: Input: learning rate α, initial point x1,i = xinit, u 1

2
,i = v̂0,i = ǫ1 (with ǫ ≥ 0),m0,i = 0, mixing

matrix W
2: for t = 1, 2, · · · , T do

3: for all i ∈ [N ] do in parallel

4: gt,i ← ∇fi(xt,i) + ξt,i
5: mt,i = β1mt−1,i + (1− β1)gt,i
6: v̂t,i =

t−1
t v̂t−1,i +

1
t g

2
t,i

7: xt+ 1

2
,i =

∑N
j=1Wijxt,j

8: ũt,i =
∑N

j=1Wij ũt− 1

2
,j

9: ut,i = max(ũt,i, ǫ)
10: xt+1,i = xt+ 1

2
,i − α

mt,i√
ut,i

11: ũt+ 1

2
,i = ũt,i − v̂t−1,i + v̂t,i

12: end for

The pseudo code of the algorithm is shown in Algorithm 4. There are two details in Algorithm 4
worth mentioning. The first one is that the introduced framework leverages momentum mt,i in
updates, while original AdaGrad does not use momentum. The momentum can be turned off by
setting β1 = 0 and the convergence results will still hold. The other one is that in Decentralized
AdaGrad, we use the average instead of the sum in the term v̂t,i. In other words, we write v̂t,i =
1
t

∑t
k=1 g

2
k,i. This latter point is different from the original AdaGrad which actually uses v̂t,i =

∑t
k=1 g

2
k,i.

The reason is that in the original AdaGrad, a constant stepsize (α independent of t or T ) is used
with v̂t,i =

∑t
k=1 g

2
k,i. This is equivalent to using a well-known decreasing stepsize sequence αt =

1√
t

with v̂t,i =
1
t

∑t
k=1 g

2
k,i. In our convergence analysis, which can be found below, we use a constant

stepsize α = O( 1√
T
) to replace the decreasing stepsize sequence αt = O( 1√

t
). Such a replacement

is popularly used in Stochastic Gradient Descent analysis for the sake of simplicity and to achieve
a better convergence rate. In addition, it is easy to modify our theoretical framework to include
decreasing stepsize sequences such as αt = O( 1√

t
). The convergence analysis for decentralized

AdaGrad is shown in Theorem 4.

Theorem 4. Assume A1-A4. Set α =
√
N/
√
Td. When α ≤ ǫ0.5

16L , decentralized AdaGrad yields the
following regret bound

1

T

T∑

t=1

E





∥
∥
∥
∥
∥

∇f(Xt)

U
1/4
t

∥
∥
∥
∥
∥

2


 ≤ C ′
1

√
d√

TN
D′

f +
C ′
2

T
+

C ′
3N

1.5

T 1.5d0.5
+

√
N(1 + log(T ))

T
(dC ′

4 +

√
d

T 0.5
C ′
5) ,

where D′
f := E[f(Z1)]−minz f(z)]+σ2, C ′

1 = C1, C
′
2 = C2, C

′
3 = C3, C

′
4 = C4G

2
∞ and C ′

5 = C5G
2
∞.

C1, C2, C3, C4, C5 are defined in Theorem 2 independent of d, T and N . In addition, the consensus

of variables at different nodes is given by 1
N

∑N
i=1

∥
∥xt,i −X t

∥
∥
2 ≤ N

T

(
1

1−λ

)2
G2

∞
1
ǫ .

11



4 Numerical Experiments

In this section, we conduct some experiments to test the performance of Decentralized AMS-
Grad, developed in Algorithm 3, on both homogeneous data and heterogeneous data distribu-
tion (i.e., the data generating distribution on different nodes are assumed to be different). Com-
parison with DADAM and the decentralized parallel stochastic gradient descent (D-PSGD) de-
veloped in Lian et al. (2017) are conducted. We train a Convolutional Neural Network (CNN)
with 3 convolution layers followed by a fully connected layer on MNIST (LeCun, 1998). We set
ǫ = 10−6 for both Decentralized AMSGrad and DADAM. The learning rate is chosen from the grid
[10−1, 10−2, 10−3, 10−4, 10−5, 10−6] based on validation accuracy for all algorithms. In the following
experiments, the graph contains 5 nodes and each node can only communicate with its two adjacent
neighbors forming a cycle. Regarding the mixing matrix W , we set Wij = 1/3 if nodes i and j
are neighbors and Wij = 0 otherwise. The implementation was based on the PaddlePaddle deep
learning platform.

4.1 Effect of heterogeneity

Homogeneous data: The whole dataset is shuffled and evenly split into different nodes. Such a
setting is possible when the nodes are in a computer cluster. We see, Figure 1(a), that decentralized
AMSGrad and DADAM perform quite similarly while D-PSGD (labelled as DGD) is much slower
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(a) Homogeneous data
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(b) Heterogeneous data

Figure 1: Training loss and Testing accuracy for homogeneous and heterogeneous data
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both in terms of training loss and test accuracy. Though the (possible) non convergence of DADAM,
mentioned in this paper, its performance are empirically good on homogeneous data. The reason is
that the adaptive learning rates tend to be similar on different nodes in presence of homogeneous
data distribution. We thus compare these algorithms under the heterogeneous regime.

Heterogeneous data: Here, each node only contains training data with two labels out of ten.
Such a setting is common when data shuffling is prohibited, such as in federated learning and other
privacy-sensitive scenarios. We can see that each algorithm converges significantly slower than with
homogeneous data. Especially, the performance of DADAM deteriorates significantly. Decentral-
ized AMSGrad achieves the best training and testing performance in that setting as observed in
Figure 1(b). These experiments show that although DADAM is shown to have good performance on
homogeneous data in Nazari et al. (2019), heterogeneous data can be detrimental to its performance.
On the contrary, decentralized AMSGrad is less impacted by heterogeneous data distribution as a
convergent variant, and it enjoys some benefits of adaptive gradient methods.

4.2 Sensitivity to the Learning Rate

We compare the training loss and testing accuracies of different D-PSGD, DADAM, and our pro-
posed decentralized AMSGrad, with different stepsizes on heterogeneous data distribution. We use
5 nodes and the heterogeneous data distribution is created by assigning each node with data of only
two labels. Note that there are no overlapping labels between different nodes.

We observe Figure2(a) and (d) that the stepsize 10−3 works best for D-PSGD in terms of test
accuracy and 10−1 works best in terms of training loss. This difference is caused by the inconsistency
among the model parameters on different nodes when the stepsize is large.

Figure 2(b) and (e) shows the performance of decentralized AMSGrad with different stepsizes.
We see that its best performance is better than the one of D-PSGD and the performance is more
stable (the test performance is less sensitive to stepsize tuning). As expected, the performance
of DADAM is not as good as D-PSGD or decentralized AMSGrad, see Figure 2(c) and (f). Its
divergence characteristic, highlighted Section 2.3, coupled with the heterogeneity in the data am-
plify its non-convergence issue in our experiments. From the experiments above, we can see the
advantages of decentralized AMSGrad in terms of both performance and ease of parameter tuning,
and the importance of ensuring the theoretical convergence of any newly proposed methods in the
presented setting.

5 Conclusion

This paper studies the problem of designing adaptive gradient methods for decentralized training.
We propose a unifying algorithmic framework that can convert existing adaptive gradient meth-
ods to decentralized settings. With rigorous convergence analysis, we show that if the original
algorithm converges under some minor conditions, the converted algorithm obtained using our pro-
posed framework is guaranteed to converge to stationary points of the regret function. By applying
our framework to AMSGrad, we propose the first convergent adaptive gradient methods, namely
Decentralized AMSGrad. We also give an extension to a decentralized variant of AdaGrad for com-
pleteness of our converting scheme. Experiments show that the proposed algorithm achieves better
performance than the baselines.
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(a) D-PSGD loss
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(b) Decentralized AMS loss
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(c) Decentralized Adam loss
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(d) D-PSGD accuracy
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(e) Decentralized AMS accuracy
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(f) Decentralized Adam accuracy

Figure 2: Training loss and testing accuracy comparison of different stepsizes for various methods
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Appendix

We provide the proofs for our convergence analysis. After having established several important
Lemmas in Section A, we provide a proof for Theorem 2 in Section B. Section C and Section D corre-
spond to the proofs for the extension and application of Theorem 2 to the AMSGrad and AdaGrad
algorithms used as prototypes of our general class of decentralized adaptive gradient methods.

A Proof of Auxiliary Lemmas

Similarly to Yan et al. (2018); Chen et al. (2019) with SGD (with momentum) and centralized
adaptive gradient methods, define the following auxiliary sequence:

Zt = Xt +
β1

1− β1
(X t −Xt−1) , (5)

with X0 , X1. Such an auxiliary sequence can help us deal with the bias brought by the momentum
and simplifies the convergence analysis.

Lemma A.1. For the sequence defined in (5), we have

Zt+1 − Zt = α
β1

1− β1

1

N

N∑

i=1

mt−1,i ⊙ (
1

√
ut−1,i

− 1
√
ut,i

)− α
1

N

N∑

i=1

gt,i√
ut,i

.

Proof: By update rule of Algorithm 2, we first have

Xt+1 =
1

N

N∑

i=1

xt+1,i =
1

N

N∑

i=1

(

xt+0.5,i − α
mt,i√
ut,i

)

=
1

N

N∑

i=1





N∑

j=1

Wijxt,j − α
mt,i√
ut,i





(i)
=




1

N

N∑

j=1

xt,j



− 1

N

N∑

i=1

α
mt,i√
ut,i

=Xt −
1

N

N∑

i=1

α
mt,i√
ut,i

,

where (i) is due to an interchange of summation and
∑

i=1Wij = 1. Then, we have

Zt+1 − Zt =X t+1 −X t +
β1

1− β1
(X t+1 −Xt)−

β1
1− β1

(Xt+1 −X t)

=
1

1− β1
(X t+1 −X t)−

β1
1− β1

(X t+1 −Xt)

=
1

1− β1

(

− 1

N

N∑

i=1

α
mt,i√
ut,i

)

− β1
1− β1

(

− 1

N

N∑

i=1

α
mt−1,i√
ut−1,i

)

=
1

1− β1

(

− 1

N

N∑

i=1

α
β1mt−1,i + (1− β1)gt,i√

ut,i

)

− β1
1− β1

(

− 1

N

N∑

i=1

α
mt−1,i√
ut−1,i

)
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=α
β1

1− β1

1

N

N∑

i=1

mt−1,i ⊙ (
1

√
ut−1,i

− 1
√
ut,i

)− α
1

N

N∑

i=1

gt,i√
ut,i

,

which is the desired result. �

Lemma A.2. Given a set of numbers a1, · · · , an and denote their mean to be ā = 1
n

∑n
i=1 ai. Define

bi(r) ,= max(ai, r) and b̄(r) = 1
n

∑n
i=1 bi(r). For any r and r′ with r′ ≥ r we have

n∑

i=1

|bi(r)− b̄(r)| ≥
n∑

i=1

|bi(r′)− b̄(r′)| (6)

and when r ≤ mini∈[n] ai, we have

n∑

i=1

|bi(r)− b̄(r)| =
n∑

i=1

|ai − ā| . (7)

Proof : Without loss of generality, assume ai ≤ aj when i < j, i.e., ai is a non-decreasing sequence.
Define

h(r) =

n∑

i=1

|bi(r)− b̄(r)| =
n∑

i=1

|max(ai, r)−
1

n

n∑

j=1

max(aj , r)| .

We need to prove that h is a non-increasing function of r. First, it is easy to see that h is a
continuous function of r with non-differentiable points r = ai, i ∈ [n], thus h is a piece-wise linear
function.

Next, we will prove that h(r) is non-increasing in each piece. Define l(r) to be the largest index
with a(l(r)) < r, and s(r) to be the largest index with as(r) < b̄(r). Note that we have for i ≤ l(r),
bi(r) = r and for i ≤ s(r) bi(r)− b̄(r) ≤ 0 since ai is a non-decreasing sequence. Therefore, we have

h(r) =

l(r)
∑

i=1

(b̄(r)− r) +

s(r)
∑

i=l(r)+1

(b̄(r)− ai) +

n∑

i=s(r)+1

(ai − b̄(r))

and

b̄(r) =
1

n



l(r)r +

n∑

i=l(r)+1

ai



 .

Taking derivative of the above form, we know the derivative of h(r) at differentiable points is

h′(r) =l(r)(
l(r)

n
− 1) + (s(r)− l(r))

l(r)

n
− (n− s(r))

l(r)

n

=
l(r)

n
((l(r)− n) + (s(r)− l(r))− (n − s(r))) .

Since we have s(r) ≤ n we know (l(r)− n) + (s(r)− l(r))− (n− s(r)) ≤ 0 and thus

h′(r) ≤ 0 ,

which means h(r) is non-increasing in each piece. Combining with the fact that h(r) is continuous,
(6) is proven. When r ≤ a(i), we have b(i) = max(ai, r) = r, for all r ∈ [n] and b̄(r) = 1

n

∑n
i=1 ai = ā

which proves (7). �
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B Proof of Theorem 2

To prove convergence of the algorithm, we first define an auxiliary sequence

Zt = Xt +
β1

1− β1
(X t −Xt−1) , (8)

with X0 , X1. Since E[gt,i] = ∇f(xt,i) and ut,i is a function of G1:t−1 (which denotes G1, G2, · · · , Gt−1),
we have

EGt|G1:t−1

[

1

N

N∑

i=1

gt,i√
ut,i

]

=
1

N

N∑

i=1

∇fi(xt,i)√
ut,i

.

Assuming smoothness (A1) we have

f(Zt+1) ≤ f(Zt) + 〈∇f(Zt), Zt+1 − Zt〉+
L

2
‖Zt+1 − Zt‖2 .

Using Lemma A.1 into the above inequality and take expectation over Gt given G1:t−1, we have

EGt|G1:t−1
[f(Zt+1)]

≤f(Zt)− α

〈

∇f(Zt),
1

N

N∑

i=1

∇fi(xt,i)√
ut,i

〉

+
L

2
EGt|G1:t−1

[
‖Zt+1 − Zt‖2

]

+ α
β1

1− β1
EGt|G1:t−1

[〈

∇f(Zt),
1

N

N∑

i=1

mt−1,i ⊙ (
1

√
ut−1,i

− 1
√
ut,i

)

〉]

.

Then take expectation over G1:t−1 and rearrange, we have

αE

[〈

∇f(Zt),
1

N

N∑

i=1

∇fi(xt,i)√
ut,i

〉]

≤E[f(Zt)]− E[f(Zt+1)] +
L

2
E
[
‖Zt+1 − Zt‖2

]

+ α
β1

1− β1
E

[〈

∇f(Zt),
1

N

N∑

i=1

mt−1,i ⊙ (
1

√
ut−1,i

− 1
√
ut,i

)

〉]

. (9)

In addition, we have

〈

∇f(Zt),
1

N

N∑

i=1

∇fi(xt,i)√
ut,i

〉

=

〈

∇f(Zt),
1

N

N∑

i=1

∇fi(xt,i)
√

U t

〉

+

〈

∇f(Zt),
1

N

N∑

i=1

∇fi(xt,i)⊙
(

1
√
ut,i
− 1
√

U t

)〉

(10)

and the first term on RHS of the equality can be lower bounded as
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〈

∇f(Zt),
1

N

N∑

i=1

∇fi(xt,i)
√

U t

〉

=
1

2

∥
∥
∥
∥
∥

∇f(Zt)

U
1/4
t

∥
∥
∥
∥
∥

2

+
1

2

∥
∥
∥
∥
∥

1
N

∑N
i=1∇fi(xt,i)
U

1/4
t

∥
∥
∥
∥
∥

2

− 1

2

∥
∥
∥
∥
∥

∇f(Zt)− 1
N

∑N
i=1∇fi(xt,i)

U
1/4
t

∥
∥
∥
∥
∥

2

≥1

4

∥
∥
∥
∥
∥

∇f(Xt)

U
1/4
t

∥
∥
∥
∥
∥

2

+
1

4

∥
∥
∥
∥
∥

∇f(Xt)

U
1/4
t

∥
∥
∥
∥
∥

2

− 1

2

∥
∥
∥
∥
∥

∇f(Zt)− 1
N

∑N
i=1∇fi(xt,i)

U
1/4
t

∥
∥
∥
∥
∥

2

− 1

2

∥
∥
∥
∥
∥

∇f(Zt)−∇f(Xt)

U
1/4
t

∥
∥
∥
∥
∥

2

− 1

2

∥
∥
∥
∥
∥

1
N

∑N
i=1∇fi(xt,i)−∇f(Xt)

U
1/4
t

∥
∥
∥
∥
∥

2

≥1

2

∥
∥
∥
∥
∥

∇f(Xt)

U
1/4
t

∥
∥
∥
∥
∥

2

− 3

2

∥
∥
∥
∥
∥

∇f(Zt)−∇f(Xt)

U
1/4
t

∥
∥
∥
∥
∥

2

− 3

2

∥
∥
∥
∥
∥

1
N

∑N
i=1∇fi(xt,i)−∇f(Xt)

U
1/4
t

∥
∥
∥
∥
∥

2

, (11)

where the inequalities are all due to Cauchy-Schwartz. Substituting (11) and (10) into (9), yields

1

2
αE





∥
∥
∥
∥
∥

∇f(Xt)

U
1/4
t

∥
∥
∥
∥
∥

2


 ≤E[f(Zt)]− E[f(Zt+1)] +
L

2
E
[
‖Zt+1 − Zt‖2

]

+ α
β1

1− β1
E

[〈

∇f(Zt),
1

N

N∑

i=1

mt−1,i ⊙ (
1

√
ut−1,i

− 1
√
ut,i

)

〉]

− αE

[〈

∇f(Zt),
1

N

N∑

i=1

∇fi(xt,i)⊙
(

1
√
ut,i
− 1
√

U t

)〉]

+
3

2
αE





∥
∥
∥
∥
∥

1
N

∑N
i=1∇fi(xt,i)−∇f(Xt)

U
1/4
t

∥
∥
∥
∥
∥

2

+

∥
∥
∥
∥
∥

∇f(Zt)−∇f(Xt)

U
1/4
t

∥
∥
∥
∥
∥

2


 .

Then sum over the above inequality from t = 1 to T and divide both sides by Tα/2, we have

1

T

T∑

t=1

E





∥
∥
∥
∥
∥

∇f(Xt)

U
1/4
t

∥
∥
∥
∥
∥

2


 ≤ 2

Tα
(E[f(Z1)]− E[f(ZT+1)]) +

L

Tα

T∑

t=1

E
[
‖Zt+1 − Zt‖2

]

+
2

T

β1
1− β1

T∑

t=1

E

[〈

∇f(Zt),
1

N

N∑

i=1

mt−1,i ⊙ (
1

√
ut−1,i

− 1
√
ut,i

)

〉]

︸ ︷︷ ︸

D1

+
2

T

T∑

t=1

E

[〈

∇f(Zt),
1

N

N∑

i=1

∇fi(xt,i)⊙
(

1
√

U t

− 1
√
ut,i

)〉]

︸ ︷︷ ︸

D2

+
3

T

T∑

t=1

E





∥
∥
∥
∥
∥

1
N

∑N
i=1∇fi(xt,i)−∇f(Xt)

U
1/4
t

∥
∥
∥
∥
∥

2

+

∥
∥
∥
∥
∥

∇f(Zt)−∇f(Xt)

U
1/4
t

∥
∥
∥
∥
∥

2




︸ ︷︷ ︸

D3

.

(12)
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Next we need to upper bound all the terms on RHS of the above inequality to obtain the
convergence rate. For the terms composing D3 in (12), we can upper bound them by

∥
∥
∥
∥
∥

∇f(Zt)−∇f(Xt)

U
1/4
t

∥
∥
∥
∥
∥

2

≤ 1

minj∈[d][U
1/2
t ]j

∥
∥∇f(Zt)−∇f(Xt)

∥
∥
2

≤ L
1

minj∈[d][U
1/2
t ]j

∥
∥Zt −X t

∥
∥
2

︸ ︷︷ ︸

D4

(13)

and

∥
∥
∥
∥
∥

1
N

∑N
i=1∇fi(xt,i)−∇f(Xt)

U
1/4
t

∥
∥
∥
∥
∥

2

≤ 1

minj∈[d][U
1/2
t ]j

1

N

N∑

i=1

∥
∥∇fi(xt,i)−∇f(Xt)

∥
∥
2

≤L 1

minj∈[d][U
1/2
t ]j

1

N

N∑

i=1

∥
∥xt,i −X t

∥
∥
2

︸ ︷︷ ︸

D5

, (14)

using Jensen’s inequality, Lipschitz continuity of fi, and the fact that f = 1
N

∑N
i=1 fi. Next we need

to bound D4 and D5. Recall the update rule of Xt, we have

Xt = Xt−1W − α
Mt−1√
Ut−1

= X1W
t−1 − α

t−2∑

k=0

Mt−k−1
√

Ut−k−1

W k , (15)

where we define W 0 = I. Since W is a symmetric matrix, we can decompose it as W = QΛQT

where Q is a orthonormal matrix and Λ is a diagonal matrix whose diagonal elements correspond
to eigenvalues of W in an descending order, i.e., Λii = λi with λi being i-th largest eigenvalue of
W . In addition, because W is a doubly stochastic matrix, we know λ1 = 1 and q1 = 1N√

N
. With

eigen-decomposition of W , we can rewrite D5 as

N∑

i=1

∥
∥xt,i −X t

∥
∥
2
= ‖Xt −Xt1

T
N‖2F = ‖XtQQT −Xt

1

N
1N1

T
N‖2F =

N∑

l=2

‖Xtql‖2 . (16)

In addition, we can rewrite (15) as

Xt = X1W
t−1 − α

t−2∑

k=0

Mt−k−1
√

Ut−k−1

W k = X1 − α

t−2∑

k=0

Mt−k−1
√

Ut−k−1

QΛkQT , (17)

where the last equality is because x1,i = x1,j , for all i, j and thus X1W = X1. Then we have when
l > 1,

Xtql = (X1 − α
t−2∑

k=0

Mt−k−1
√

Ut−k−1

QΛkQT )ql = −α
t−2∑

k=0

Mt−k−1
√

Ut−k−1

qlλ
k
l , (18)

since Q is orthonormal and X1ql = x1,11
T
Nql = x1,1

√
NqT1 ql = 0, for all l 6= 1 .
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Combining (16) and (18) yields

D5 =

N∑

i=1

∥
∥xt,i −Xt

∥
∥
2
=

N∑

l=2

‖Xtql‖2

=
N∑

l=2

α2

∥
∥
∥
∥
∥

t−2∑

k=0

Mt−k−1
√

Ut−k−1

λk
l ql

∥
∥
∥
∥
∥

2

≤α2

(
1

1− λ

)2

NdG2
∞
1

ǫ
, (19)

where the last inequality follows from the fact that gt,i ≤ G∞, ‖ql‖ = 1, and |λl| ≤ λ < 1. Now let
us turn to D4, it can be rewritten as

∥
∥Zt −Xt

∥
∥
2
=

∥
∥
∥
∥

β1
1− β1

(Xt −X t−1)

∥
∥
∥
∥

2

=

(
β1

1− β1

)2

α2

∥
∥
∥
∥
∥

1

N

N∑

i=1

mt−1,i√
ut−1,i

∥
∥
∥
∥
∥

2

≤
(

β1
1− β1

)2

α2d
G2

∞
ǫ

.

Now we know both D4 and D5 are in the order of O(α2) and thus D3 is in the order of O(α2). Next
we will bound D2 and D1. Define G1 , maxt∈[T ]maxi∈[N ] ‖∇fi(xt,i)‖∞, G2 , maxt∈[T ] ‖∇f(Zt)‖∞,

G3 , maxt∈[T ]maxi∈[N ] ‖gt,i‖∞ and G∞ = max(G1, G2, G3). Then we have

D2 =
T∑

t=1

E

[〈

∇f(Zt),
1

N

N∑

i=1

∇fi(xt,i)⊙
(

1
√

U t

− 1
√
ut,i

)〉]

≤
T∑

t=1

E



G2
∞

1

N

N∑

i=1

d∑

j=1

∣
∣
∣
∣
∣
∣

1
√

[U t]j

− 1
√

[ut,i]j

∣
∣
∣
∣
∣
∣





=

T∑

t=1

E



G2
∞

1

N

N∑

i=1

d∑

j=1

∣
∣
∣
∣
∣
∣

1
√

[U t]j

− 1
√

[ut,i]j

∣
∣
∣
∣
∣
∣

√

[U t]j +
√

[ut,i]j
√

[U t]j +
√

[ut,i]j





=

T∑

t=1

E



G2
∞

1

N

N∑

i=1

d∑

j=1

∣
∣
∣
∣
∣
∣

[U t]j − [ut,i]j

[U t]j
√

[ut,i]j +
√

[U t]j [ut,i]j

∣
∣
∣
∣
∣
∣





≤E
[ T∑

t=1

G2
∞

1

N

N∑

i=1

d∑

j=1

∣
∣
∣
∣

[U t]j − [ut,i]j
2ǫ1.5

∣
∣
∣
∣

︸ ︷︷ ︸

D6

]

, (20)

where the last inequality is due to [ut,i]j ≥ ǫ, for all t, i, j.
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To simplify notations, define ‖A‖abs =
∑

i,j |Aij | to be the entry-wise L1 norm of a matrix A,
then we obtain

D6 ≤
G2

∞
N

T∑

t=1

1

2ǫ1.5
‖U t1

T − Ut‖abs

≤G2
∞
N

T∑

t=1

1

2ǫ1.5
‖Ũ t1

T − Ũt‖abs

=
G2

∞
N

T∑

t=1

1

2ǫ1.5
‖Ũt

1

N
1N1

T
N − ŨtQQT ‖abs

=
G2

∞
N

T∑

t=1

1

2ǫ1.5
‖ −

N∑

l=2

Ũtqlq
T
l ‖abs ,

where the second inequality is due to Lemma A.2, introduced Section A, and the fact that Ut =
max(Ũt, ǫ) (element-wise max operator). Recall from update rule of Ut, by defining V̂−1 , V̂0 and
U0 , U1/2, we have for all t ≥ 0, Ũt+1 = (Ũt − V̂t−1 + V̂t)W . Thus, we obtain

Ũt = Ũ0W
t +

t∑

k=1

(−V̂t−1−k + V̂t−k)W
k = Ũ0 +

t∑

k=1

(−V̂t−1−k + V̂t−k)QΛkQT .

Then we further obtain when l 6= 1,

Ũtql = (Ũ0 +

t∑

k=1

(−V̂t−1−k + V̂t−k)QΛkQT )ql =

t∑

k=1

(−V̂t−1−k + V̂t−k)qlλ
k
l ,

where the last equality is due to the definition Ũ0 , U1/2 = ǫ1d1
T
N =

√
Nǫ1d1

T
N (recall that

q1 = 1√
N
1
T
N ) and qTi qj = 0 when i 6= j. Note that by definition of ‖ · ‖abs, we have for all

A,B, ‖A+B‖abs ≤ ‖A‖abs + ‖B‖abs, then

D6 ≤
G2

∞
N

T∑

t=1

1

2ǫ1.5
‖ −

N∑

l=2

Ũtqlq
T
l ‖abs

=
G2

∞
N

T∑

t=1

1

2ǫ1.5
‖ −

t∑

k=1

(−V̂t−1−k + V̂t−k)

N∑

l=2

qlλ
k
l q

T
l ‖abs

≤G2
∞
N

T∑

t=1

1

2ǫ1.5

t∑

k=1

d∑

j=1

‖
N∑

l=2

qlλ
k
l q

T
l ‖1‖(−V̂t−1−k + V̂t−k)

T ej‖1

≤G2
∞
N

T∑

t=1

1

2ǫ1.5

t∑

k=1

d∑

j=1

√
N‖

N∑

l=2

qlλ
k
l q

T
l ‖2‖(−V̂t−1−k + V̂t−k)

T ej‖1

≤G2
∞
N

T∑

t=1

1

2ǫ1.5

t∑

k=1

d∑

j=1

‖(−V̂t−1−k + V̂t−k)
T ej‖1

√
Nλk

=
G2

∞
N

T∑

t=1

1

2ǫ1.5

t∑

k=1

‖(−V̂t−1−k + V̂t−k)‖abs
√
Nλk
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=
G2

∞
N

1

2ǫ1.5

T−1∑

o=0

T∑

t=o+1

‖(−V̂o−1 + V̂o)‖abs
√
Nλt−o

≤G2
∞√
N

1

2ǫ1.5

T−1∑

o=0

λ

1− λ
‖(−V̂o−1 + V̂o)‖abs , (21)

where λ = max(|λ2|, |λN |). Combining (20) and (21), we have

D2 ≤
G2

∞√
N

1

2ǫ1.5
λ

1− λ
E

[
T−1∑

o=0

‖(−V̂o−1 + V̂o)‖abs

]

.

Now we need to bound D1, we have

D1 =

T∑

t=1

E

[〈

∇f(Zt),
1

N

N∑

i=1

mt−1,i ⊙ (
1

√
ut−1,i

− 1
√
ut,i

)

〉]

≤
T∑

t=1

E



G2
∞

1

N

N∑

i=1

d∑

j=1

∣
∣
∣
∣

1
√

[ut−1,i]j
− 1
√

[ut,i]j

∣
∣
∣
∣





=

T∑

t=1

E



G2
∞

1

N

N∑

i=1

d∑

j=1

∣
∣
∣
∣
∣

(

1
√

[ut−1,i]j
− 1
√

[ut,i]j

) √

[ut,i]j +
√

[ut−1,i]j
√

[ut,i]j +
√

[ut−1,i]j

∣
∣
∣
∣
∣





≤
T∑

t=1

E



G2
∞

1

N

N∑

i=1

d∑

j=1

∣
∣
∣
∣

1

2ǫ1.5
([ut−1,i]j − [ut,i]j)

∣
∣
∣
∣





(a)

≤
T∑

t=1

E



G2
∞

1

N

N∑

i=1

d∑

j=1

1

2ǫ1.5
|([ũt−1,i]j − [ũt,i]j)|





=G2
∞

1

2ǫ1.5
1

N
E

[
T∑

t=1

‖Ũt−1 − Ũt‖abs

]

, (22)

where (a) is due to [ũt−1,i]j = max([ut−1,i]j, ǫ) and the function max(·, ǫ) is 1-Lipschitz. In addition,
by update rule of Ut, we have

T∑

t=1

‖Ũt−1 − Ũt‖abs =
T∑

t=1

‖Ũt−1 − (Ũt−1 − V̂t−2 + V̂t−1)W‖abs

=

T∑

t=1

‖Ũt−1(QQT −QΛQT ) + (−V̂t−2 + V̂t−1)W‖abs

=

T∑

t=1

‖Ũt−1(

N∑

l=2

ql(1− λl)q
T
l ) + (−V̂t−2 + V̂t−1)W‖abs

≤
T∑

t=1

‖
t−1∑

k=1

(−V̂t−2−k + V̂t−1−k)

N∑

l=2

qlλ
k
l (1− λl)q

T
l ‖abs +

T∑

t=1

‖(−V̂t−2 + V̂t−1)W‖abs

≤
T∑

t=1

(
t−1∑

k=1

‖ − V̂t−2−k + V̂t−1−k‖abs
√
Nλk

)

+
T∑

t=1

‖(−V̂t−2 + V̂t−1)‖abs
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=

T∑

t=1

(
t−1∑

o=1

‖ − V̂o−2 + V̂o−1‖abs
√
Nλt−o

)

+

T∑

t=1

‖(−V̂t−2 + V̂t−1)‖abs

=
T−1∑

o=1

T∑

t=o+1

(

‖ − V̂o−2 + V̂o−1‖abs
√
Nλt−o

)

+
T∑

t=1

‖(−V̂t−2 + V̂t−1)‖abs

≤
T−1∑

o=1

λ

1− λ

(

‖ − V̂o−2 + V̂o−1‖abs
√
N
)

+

T∑

t=1

‖(−V̂t−2 + V̂t−1)‖abs

≤ 1

1− λ

T∑

t=1

‖(−V̂t−2 + V̂t−1)‖abs
√
N . (23)

Combining (22) and (23) yields

D1 ≤ G2
∞

1

2ǫ1.5
1

N
E

[

1

1− λ

T∑

t=1

‖(−V̂t−2 + V̂t−1)‖abs
√
N

]

. (24)

What remains is to bound
∑T

t=1 E
[
‖Zt+1 − Zt‖2

]
. By update rule of Zt, we have

‖Zt+1 − Zt‖2 =
∥
∥
∥
∥
∥
α

β1
1− β1

1

N

N∑

i=1

mt−1,i ⊙ (
1

√
ut−1,i

− 1
√
ut,i

)− α
1

N

N∑

i=1

gt,i√
ut,i

∥
∥
∥
∥
∥

2

≤2α2

∥
∥
∥
∥
∥

β1
1− β1

1

N

N∑

i=1

mt−1,i ⊙ (
1

√
ut−1,i

− 1
√
ut,i

)

∥
∥
∥
∥
∥

2

+ 2α2

∥
∥
∥
∥
∥

1

N

N∑

i=1

gt,i√
ut,i

∥
∥
∥
∥
∥

2

≤2α2

(
β1

1− β1

)2

G2
∞

1

N

N∑

i=1

d∑

j=1

1√
ǫ

∣
∣
∣
∣
∣

1
√

[ut−1,i]j
− 1
√

[ut,i]j

∣
∣
∣
∣
∣
+ 2α2

∥
∥
∥
∥
∥

1

N

N∑

i=1

gt,i√
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∥
∥
∥
∥
∥

2

≤2α2

(
β1

1− β1
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∞

1

N
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j=1
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ǫ

∣
∣
∣
∣

[ut,i]j − [ut−1,i]j
2ǫ1.5

∣
∣
∣
∣
+ 2α2

∥
∥
∥
∥
∥

1

N

N∑

i=1

gt,i√
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∥
∥
∥
∥
∥

2

≤2α2

(
β1

1− β1

)2

G2
∞

1

N
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d∑
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1

2ǫ2
|[ũt,i]j − [ũt−1,i]j |+ 2α2

∥
∥
∥
∥
∥

1

N

N∑

i=1

gt,i√
ut,i

∥
∥
∥
∥
∥

2

=2α2

(
β1

1− β1

)2

G2
∞

1

N

1

2ǫ2
‖Ũt − Ũt−1‖abs + 2α2

∥
∥
∥
∥
∥

1

N

N∑

i=1

gt,i√
ut,i

∥
∥
∥
∥
∥

2

, (25)

where the last inequality is again due to the definition that [ũt,i]j = max([ut,i]j , ǫ) and the fact that
max(·, ǫ) is 1-Lipschitz. Then, we have

T∑

t=1

E[‖Zt+1 − Zt‖2]

≤2α2

(
β1

1− β1

)2

G2
∞

1

N

1

2ǫ2
E

[
T∑

t=1

‖Ũt − Ũt−1‖abs
]

+ 2α2
T∑

t=1

E





∥
∥
∥
∥
∥

1

N

N∑

i=1

gt,i√
ut,i

∥
∥
∥
∥
∥

2




≤α2

(
β1

1− β1

)2 G2
∞√
N

1

ǫ2
1

1− λ
E

[
T∑

t=1

‖(−V̂t−2 + V̂t−1)‖abs

]

+ 2α2
T∑

t=1

E





∥
∥
∥
∥
∥

1

N

N∑

i=1

gt,i√
ut,i

∥
∥
∥
∥
∥

2


 ,

23



where the last inequality is due to (23).
We now bound the last term on RHS of the above inequality. A trivial bound can be

T∑

t=1

∥
∥
∥
∥
∥

1

N

N∑

i=1

gt,i√
ut,i

∥
∥
∥
∥
∥

2

≤
T∑

t=1

dG2
∞
1

ǫ
,

due to ‖gt,i‖ ≤ G∞ and [ut,i]j ≥ ǫ, for all j (verified from update rule of ut,i and the assumption
that [vt,i]j ≥ ǫ, for all i). However, the above bound is independent of N , to get a better bound, we
need a more involved analysis to show its dependency on N . To do this, we first notice that

EGt|G1:t−1





∥
∥
∥
∥
∥

1

N

N∑

i=1

gt,i√
ut,i

∥
∥
∥
∥
∥

2




=EGt|G1:t−1




1

N2

N∑

i=1

N∑

j=1

〈∇fi(xt,i) + ξt,i√
ut,i

,
∇fj(xt,j) + ξt,j√

ut,j

〉




(a)
=EGt|G1:t−1





∥
∥
∥
∥
∥

1

N

N∑

i=1

∇fi(xt,i)√
ut,i

∥
∥
∥
∥
∥

2


+ EGt|G1:t−1

[

1

N2

N∑

i=1

∥
∥
∥
∥

ξt,i√
ut,i

∥
∥
∥
∥

2
]

(b)
=

∥
∥
∥
∥
∥

1

N

N∑

i=1

∇fi(xt,i)√
ut,i

∥
∥
∥
∥
∥

2

+
1

N2

N∑

i=1

d∑

l=1

EGt|G1:t−1
[[ξt,i]

2
l ]

[ut,i]l

(c)

≤
∥
∥
∥
∥
∥

1

N

N∑

i=1

∇fi(xt,i)√
ut,i

∥
∥
∥
∥
∥

2

+
d

N

σ2

ǫ
,

where (a) is due to EGt|G1:t−1
[ξt,i] = 0 and ξt,i is independent of xt,j , ut,j for all j, and ξj , for all

j 6= i, (b) comes from the fact that xt,i, ut,i are fixed given G1:t, (c) is due to EGt|G1:t−1
[[ξt,i]

2
l ≤ σ2

and [ut.i]l ≥ ǫ by definition. Then we have

E





∥
∥
∥
∥
∥

1

N

N∑

i=1

gt,i√
ut,i

∥
∥
∥
∥
∥

2

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
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



∥
∥
∥
∥
∥

1

N

N∑

i=1

gt,i√
ut,i

∥
∥
∥
∥
∥

2








≤EG1:t−1





∥
∥
∥
∥
∥

1

N

N∑

i=1

∇fi(xt,i)√
ut,i

∥
∥
∥
∥
∥

2

+
d

N

σ2

ǫ





=E





∥
∥
∥
∥
∥

1

N

N∑

i=1

∇fi(xt,i)√
ut,i

∥
∥
∥
∥
∥

2


+
d

N

σ2

ǫ
. (26)

In standard analysis of SGD-like distributed algorithms, the term corresponding to E

[∥
∥
∥

1
N

∑N
i=1

∇fi(xt,i)√
ut,i

∥
∥
∥

2
]

will be merged with the first order descent when the stepsize is chosen to be small enough. However,
in our case, the term cannot be merged because it is different from the first order descent in our
algorithm. A brute-force upper bound is possible but this will lead to a worse convergence rate in
terms of N . Thus, we need a more detailed analysis for the term in the following.
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E





∥
∥
∥
∥
∥

1

N

N∑

i=1

∇fi(xt,i)√
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∥
∥
∥
∥
∥

2


 =E





∥
∥
∥
∥
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1

N
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√
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+
1

N
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1
√
ut,i
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√
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∥
∥

2




≤2E


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N
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√
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∥
∥

2
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1

N
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1
√
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√
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∥
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∥

2



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
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∥
∥
∥
∥
∥

1

N
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√
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∥
∥
∥
∥
∥

2


+ 2E




1

N

N∑
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∥
∥
∥
∥
∥
∇fi(xt,i)⊙
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1
√
ut,i
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√
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)∥
∥
∥
∥
∥

2




≤2E





∥
∥
∥
∥
∥

1

N

N∑
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√

U t

∥
∥
∥
∥
∥

2

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[

1

N

N∑

i=1
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∞

1√
ǫ

∥
∥
∥
∥
∥

1
√
ut,i
− 1
√

U t

∥
∥
∥
∥
∥
1

]

.

Summing over T , we have

T∑

t=1

E





∥
∥
∥
∥
∥

1

N

N∑

i=1

∇fi(xt,i)√
ut,i

∥
∥
∥
∥
∥

2



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T∑
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E





∥
∥
∥
∥
∥

1

N
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i=1

∇fi(xt,i)
√

U t

∥
∥
∥
∥
∥

2


+ 2
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E

[

1

N
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i=1

G2
∞

1√
ǫ

∥
∥
∥
∥
∥

1
√
ut,i
− 1
√

U t

∥
∥
∥
∥
∥
1

]

. (27)

For the last term on RHS of (27), we can bound it similarly as what we did for D2 from (20) to
(21), which yields

T∑

t=1

E

[

1

N

N∑

i=1

G2
∞

1√
ǫ

∥
∥
∥
∥
∥

1
√
ut,i
− 1
√

U t

∥
∥
∥
∥
∥
1

]

≤
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E

[

1

N

N∑
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G2
∞

1√
ǫ

1

2ǫ1.5
∥
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∥
∥
1

]

=
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E

[
1

N
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∞
1

2ǫ2

∥
∥U t1

T − Ut

∥
∥
abs

]

≤
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E
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1

N
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∞
1
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T
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N
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∞

1

2ǫ2
E
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λ

1− λ
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. (28)

Further, we have
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√
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2

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and the last term on RHS of the above inequality can be bounded following similar procedures from
(14) to (19), as what we did for D3. Completing the procedures yields

T∑

t=1

E





∥
∥
∥
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∥
2

]
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E
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L
1

ǫ

1

N
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∞
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ǫ
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1
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1
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)
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Finally, combining (26) to (29), we obtain
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where the last inequality is due to each element of U t is lower bounded by ǫ by definition.
Combining all above, we obtain
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+ 3α2d
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β1

1− β1

)2
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∞
ǫ1.5

+ 8α3L2

(
1

1− λ

)

d
G2

∞
ǫ2

+
1

Tǫ1.5
G2

∞√
N

1

1− λ

(

Lα

(
β1

1− β1

)2 1

ǫ0.5
+ λ+

β1
1− β1

+ 2Lα
1

ǫ0.5
λ

)

E [VT ] . (30)

where VT :=
∑T

t=1 ‖(−V̂t−2 + V̂t−1)‖abs. Set α = 1√
dT

and when α ≤ ǫ0.5

16L , we further have
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where the first inequality is obtained by moving the term 8Lα 1√
ǫ
1
T

∑T
t=1 E

[∥
∥
∥
∥

∇f(Xt)

U
1/4
t

∥
∥
∥
∥

2
]

on the RHS

of (30) to the LHS to cancel it using the assumption 8Lα 1√
ǫ
≤ 1

2 followed by multiplying both sides

by 2. The constants introduced in the last step are defined as following
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∞
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Substituting into Z1 = X1 completes the proof. �
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C Proof of Theorem 3

Under some assumptions stated in Corollary 2.1, we have that

1

T

T∑
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∥
∥
∥
∥
∥

∇f(Xt)
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∥
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√
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x
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T
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+

(

C4
1

T
√
N

+ C5
1

T 1.5d0.5

)

E

[
T∑

t=1

‖(−V̂t−2 + V̂t−1)‖abs
]

(32)

where ‖·‖abs denotes the entry-wise L1 norm of a matrix (i.e ‖A‖abs =
∑

i,j |Aij |) and C1, C2, C3, C4, C5

are defined in Theorem 2.
Since Algorithm 3 is a special case of 2, building on result of Theorem 2, we just need to

characterize the growth speed of E
[
∑T

t=1 ‖(−V̂t−2 + V̂t−1)‖abs
]

to prove convergence of Algorithm 3.

By the update rule of Algorithm 3, we know V̂t is non decreasing and thus

E

[
T∑

t=1

‖(−V̂t−2 + V̂t−1)‖abs
]

=E





T∑

t=1

N∑

i=1

d∑

j=1

| − [v̂t−2,i]j + [v̂t−1,i]j |





=E





T∑

t=1

N∑

i=1

d∑

j=1

(−[v̂t−2,i]j + [v̂t−1,i]j)





=E





N∑

i=1

d∑

j=1

(−[v̂−1,i]j + [v̂T−1,i]j)





=E





N∑

i=1

d∑

j=1

(−[v̂0,i]j + [v̂T−1,i]j)



 , (33)

where the last equality is because we defined V̂−1 , V̂0 previously.
Further, because ‖gt,i‖∞ ≤ G∞ for all t, i and vt,i is a exponential moving average of g2k,i, k =

1, 2, · · · , t, we know |[vt,i]j | ≤ G2
∞, for all t, i, j. In addition, by update rule of V̂t, we also know each

element of V̂t also cannot be greater than G2
∞, i.e., |[v̂t,i]j | ≤ G2

∞, for all t, i, j. Given the fact that
[v̂0,i]j ≥ 0 , we have

E

[
T∑

t=1

‖(−V̂t−2 + V̂t−1)‖abs
]

= E





N∑

i=1

d∑

j=1

(−[v̂0,i]j + [v̂T−1,i]j)



 ≤ E





N∑

i=1

d∑

j=1

G2
∞



 = NdG2
∞ .

Substituting the above into (32), we have

1

T

T∑

t=1

E





∥
∥
∥
∥
∥

∇f(Xt)

U
1/4
t

∥
∥
∥
∥
∥

2


 ≤C1

√
d√

TN

(

(E[f(Z1)]−min
x

f(x)) + σ2
)

+ C2
N

T
+ C3

N1.5

T 1.5d0.5

+

(

C4
1

T
√
N

+ C5
1

T 1.5d0.5

)

NdG2
∞

=C ′
1

√
d√

TN

(

(E[f(Z1)]−min
x

f(x)) + σ2
)

+ C ′
2

N

T
+ C ′

3

N1.5

T 1.5d0.5
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+ C ′
4

√
Nd

T
+ C ′

5

Nd0.5

T 1.5
, (34)

where we have

C ′
1 = C1 C ′

2 = C2 C ′
3 = C3 C ′

4 = C4G
2
∞ C ′

5 = C5G
2
∞ . (35)

and we conclude the proof. �

D Proof of Theorem 4

The proof follows the same flow as that of Theorem 3. Under assumptions stated in Corollary 2.1,
set α =

√
N/
√
Td, we have that

1

T

T∑

t=1

E





∥
∥
∥
∥
∥

∇f(Xt)

U
1/4
t

∥
∥
∥
∥
∥

2


 ≤C1

√
d√

TN

(

(E[f(Z1)]−min
x

f(x)) + σ2
)

+ C2
N

T
+C3

N1.5

T 1.5d0.5

+

(

C4
1

T
√
N

+ C5
1

T 1.5d0.5

)

E

[
T∑

t=1

‖(−V̂t−2 + V̂t−1)‖abs

]

, (36)

where ‖·‖abs denotes the entry-wise L1 norm of a matrix (i.e ‖A‖abs =
∑

i,j |Aij |) and C1, C2, C3, C4, C5

are defined in Theorem 2.
Again, since decentralized AdaGrad is a special case of 2, Corollary 2.1 applies and what we

need is to upper bound E

[
∑T

t=1 ‖(−V̂t−2 + V̂t−1)‖abs
]

derive convergence rate. By the update rule

of decentralized AdaGrad, we have v̂t,i =
1
t (
∑t

k=1 g
2
k,i) for t ≥ 1 and v̂0,i = ǫ1. Then we have for

t ≥ 3,

E

[
T∑

t=1

‖(−V̂t−2 + V̂t−1)‖abs

]

=E





T∑

t=1

N∑

i=1

d∑

j=1

| − [v̂t−2,i]j + [v̂t−1,i]j |





≤E





T∑

t=3

N∑

i=1

d∑

j=1

| − 1

t− 2
([

t−2∑

k=1

g2k,i]j) +
1

t− 1
([

t−1∑

k=1

g2k,i]j)|



+Nd(G2
∞ − ǫ)

≤E





T∑

t=3

N∑

i=1

d∑

j=1

|( 1

t− 1
− 1

t− 2
)([

t−2∑

k=1

g2k,i]j) +
1

t− 1
[g2t−1,i]j)|



+NdG2
∞

=E





T∑

t=3

N∑

i=1

d∑

j=1

|(− 1

(t− 1)(t− 2)
)([

t−2∑

k=1

g2k,i]j) +
1

t− 1
[g2t−1,i]j |



+NdG2
∞

≤E





T∑

t=3

N∑

i=1

d∑

j=1

max

(

1

(t− 1)(t− 2)
([

t−2∑

k=1

g2k,i]j),
1

t− 1
[g2t−1,i]j

)

+NdG2
∞

≤E
[

Nd

T∑

t=3

G2
∞

t− 1

]

+NdG2
∞

29



≤NdG2
∞ log(T ) +NdG2

∞

=NdG2
∞(log(T ) + 1)

where the first equality is because we defined V̂−1 , V̂0 previously and ‖gk,i‖∞ ≤ G∞ by assumption.
Substituting the above into (36), we have

1

T

T∑

t=1

E





∥
∥
∥
∥
∥

∇f(Xt)

U
1/4
t

∥
∥
∥
∥
∥

2


 ≤C1

√
d√

TN

(

(E[f(Z1)]−min
x

f(x)) + σ2
)

+ C2
N

T
+ C3

N1.5

T 1.5d0.5

+

(

C4
1

T
√
N

+ C5
1

T 1.5d0.5

)

NdG2
∞(log(T ) + 1)

=C ′
1

√
d√

TN

(

(E[f(Z1)]−min
x

f(x)) + σ2
)

+ C ′
2

N

T
+ C ′

3

N1.5

T 1.5d0.5

+ C ′
4

d
√
N(log(T ) + 1)

T
+ C ′

5

(log(T ) + 1)N
√
d

T 1.5
,

where we have

C ′
1 = C1 C ′

2 = C2 C ′
3 = C3 C ′

4 = C4G
2
∞ C ′

5 = C5G
2
∞ . (37)

and we conclude the proof. �
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