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Settings and Notations

• Population approach. Consider N individuals.

yi = (yij , 1 ≤ j ≤ ni ) vector of ni measurements for individual i and

ci individual covariates.

• Incomplete data Individual parameters ψi are latent.

• Parametrized hierarchical model. The distribution of yi depends

on the latent variable ψi

yi ∼ p(yi |ψi , θ)

ψi ∼ p(ψi |ci , θ)
(1)

• Mixed Effects Model. The individual parameters are decomposed

as follows:

ψi = g(β, ci , ηi ) (2)

where β is the population parameter (fixed effect) and ηi is the

random effect. We assume ηi ∼ N (0,Ω).
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Example: Continuous data model

• Continuous, non linear and mixed effects models:

yij = f (tij ;ψi ) + εij (3)

Where:

• The structural model f (tij , .) is a non linear function of ψi

• εij ∼ N (0, σ2) and σ ∈ R
• ψi = β + ηi ⇒ ψi ∼ N (β,Ω)

• Here θ = (β,Ω, σ)

• The goal is to compute the maximum likelihood estimate

θML = arg max
θ∈Θ

p(y , θ) (4)

2



Example: Non Continuous data model

• Here, the model for the observations of individual i is the conditional

distribution of yi given the set of individual parameters ψi . There is

no analytical relationship between the observations and the

individual parameters

• For repeated event models, times when events occur for individual i

are random times (Tij , 1 ≤ j ≤ ni ) for which conditional survival

functions can be defined:

P(Tij > t|Ti,j−1 = ti,j−1) = e
−

∫ t
ti,j−1

h(u,ψi )du
(5)

• Then, we can show (see (Lavielle, 2014) for more details) that the

conditional pdf of yi = (yij , 1 ≤ ni ) writes

p(yi |ψi ) = exp

{
−
∫ τc

0

h(u, ψi )du

} ni−1∏
j=1

h(tij , ψi ) (6)
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Maximum likelihood: EM

The EM algorithm (Dempster, Laird and Rubin, 1977) is an iterative

algorithm that computes MLE. At a given θk−1:

1. Q(θ, θk−1) = Ep(ψ|y ,θk−1) [log p(y , ψ, θ)]

2. θk = arg max
θ∈Θ

Qk(θ)
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SAEM (Stochastic Approximation of EM)

Given θk−1, SAEM (Delyon et al., 1999) k−th update consists in:

1. ψk
i ∼ p(ψi |yi , θk−1) (for all individuals of the population)

2. Qk(θ) = Qk−1(θ) + γk(
∑N

i=1 log p(yi , ψ
k
i , θ)− Qk−1(θ))

3. θk = arg max
θ∈Θ

Qk(θ)

Example (PK model):

f (tij ;ψi ) =
Dkai

Vi (kai − ki )
(e−ki tij − e−kai tij )

where ψi = (kai ,Vi , ki ) and

log(kai ) ∼ N (log(ka), ω2
ka)

log(Vi ) ∼ N (log(V ), ω2
V )

log(ki ) ∼ N (log(k), ω2
k)

(7)

5



Convergence behaviour: example

Figure 1: SAEM convergence (K1 = 100, K2 = 50)
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How to accelerate the convergence? We can start with the

acceleration of the posterior sampling.
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Posterior Sampling: MCMC

Metropolis Hastings:

• Random Walk Metropolis: proposals are centered in the current

state with a diagonal variance-covariance matrix, with variance

terms which are adaptively adjusted at each iteration in order to

reach some optimal acceptance rate (Atchadé and Rosenthal, 2005)

Attempts:

• SDE-based (Fox, Ma, 2015) methods using the direction of the

gradient of the target distribution (tuning and heavy calculus)

• Metropolis Adjusted Langevin Algorithm (MALA) (Roberts and

Tweedie, 1996) and its variants (Atchadé and Rosenthal, 2005)

• The Hamiltonian Monte Carlo (HMC) and its extension the ”No

U-Turns Sampler” (Hoffman and Gelman, 2014) that takes

advantage of Hamiltonian dynamics to propose candidates.
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Fast MCMC sampling: State-of-the-art

• The MALA consists in proposing a new state ψc
i using the gradient

of the target measure at the current state ψ
(k)
i :

ψc
i ∼ N (ψ

(k)
i − γk∇ log π(ψ

(k)
i ), 2γk), (8)

where (γk)k>0 is a sequence of positive integers. It is a particular

case of the RWM with a drift term (Ma et al., 2015) and a

covariance matrix that is diagonal and isotropic (uniform in all

directions).

• The NUTS (Hoffman and Gelman, 2014) which does not require the

user to choose how many steps it wants to execute in order to

produce the candidate sample using the Hamiltonian dynamics. We

use its implementation in rstan (R Package (Stan Development

Team, 2018))
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Fast MCMC sampling: New proposal

In the continuous case: For a given individual i

• Compute the Maximum A Posteriori (MAP):

ψ̂i = arg max
ψi

p(ψi |yi , θ) = arg max
ψi

p(yi |ψi , θ)p(ψi , θ)

• Taylor expansion of the structural model f around this point:

f (ψi ) ≈ f (ψ̂i ) +∇f (ψ̂i )(ψi − ψ̂i ), (9)

Proposition 1

Under this linear model, the conditional distribution of ψi is a Gaussian

distribution with mean µi and variance-covariance Γi where

µi = ψ̂i ,

Γi =

(
∇f (ψ̂i )

′∇f (ψ̂i )

σ2
+ Ω−1

)−1

.
(10)
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Fast MCMC sampling: New proposal

In the non continuous case

• Use Laplace Approximation of the incomplete likelihood

p(yi ) =

∫
e log p(yi ,ψi )dψi

• Taylor expansion of the complete log likelihood around the MAP

(∇ log p(yi , ψ̂i ) = 0):

log(p(ψ̂i |yi )) ≈ −p

2
log 2π − 1

2
log
(∣∣∣−∇2 log p(yi , ψ̂i )

∣∣∣) ,
Proposition 2

Let (yi , ψi ) be a pair of random variables where ψi is normally distributed

with variance-covariance matrix Ω. Then, the conditional distribution of

ψi can be approximated by a Gaussian distribution with mean ψ̂i and

variance-covariance

Γi = −∇2 log p(yi , ψ̂i )
−1 =

(
−∇2 log p(yi |ψ̂i ) + Ω−1

)−1

.
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Fast ML Estimation: Modified SAEM

Assume that our new proposal is used at iteration k , then the simulation

step of SAEM decomposes as follows:

1. compute the MAP under the current model parameter estimate θk−1

for all individuals i :

ψ̂
(k)
i = arg max

ψi

p(ψi |yi , θk−1). (11)

2. Compute the covariance matrix Γ
(k)
i such as:

Γ
(k)
i =


(
∇fi (ψ̂

(k)
i )∇fi (ψ̂

(k)
i )′

σ2 + Ω−1

)−1

for cont. models,(
∇ log p(yi |ψ̂(k)

i ))∇ log p(yi |ψ̂(k)
i )′ + Ω−1

)−1

otherwise.

(12)

3. Run a small number of iterations of the MH algorithm with the

proposal N (ψ̂
(k)
i , Γ

(k)
i ).
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Numerical Experiment: Warfarin Data

• 32 healthy volunteers received a 1.5 mg/kg single oral dose of

warfarin, an anticoagulant normally used in the prevention of

thrombosis (O’Reilly and Aggeler, 1968).
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Figure 2: Warfarin concentration (mg/l) over time (h) for 32 subjects

• One-compartment pharmacokinetics (PK) model for oral

administration, assuming first-order absorption and linear elimination

processes:

f (t, ka,V , k) =
D ka

V (ka− k)
(e−ka t − e−k t), (13)
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MCMC convergence: RWM

• Nonlinear continuous model: We use Proposition 1
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Figure 3: Modelling of the warfarin PK data: convergence of the

empirical quantiles of order 0.1, 0.5 and 0.9 of p(ψi |yi ; θ) for a single

individual. The reference MH algorithm is in black and solid and the new

version is in red and dotted.
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MCMC convergence: MALA and NUTS

• MALA and NUTS
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Figure 4: Modelling of the warfarin PK data: convergence of the

empirical quantiles of order 0.1, 0.5 and 0.9 of p(ψi |yi ; θ) for a single

individual. The new version is in red, the MALA is in black and the NUTS

is in blue.
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ML Estimation

• With our new proposal (red) versus reference RWM (blue)
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Figure 5: Estimation of the population PK parameters for the warfarin

data: convergence of the sequences of estimates (V̂pop,k , 1 ≤ k ≤ 200)

and (ω̂V ,k , 1 ≤ k ≤ 200) obtained with SAEM and three different initial

values using the reference MH algorithm (blue) and the new proposal

during the first 10 iterations (red).
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Monte Carlo Study

• For a given sequence of estimates, we can then define, at each

iteration k and for each component ` of the parameter, the mean

square distance over the replicates

Ek(`) =
1

M

M∑
m=1

(
θ

(m)
k (`)− θ(m)

K (`)
)2

. (14)
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Figure 6: Mean square distances for Vpop and ωV obtained with SAEM

on M = 100 synthetic datasets using the reference MH algorithm (blue)

and the new proposal during the first 10 iterations (red).
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Numerical Experiment: Time-To-Event

• Weibull model for time-to-event data (Lavielle, 2014; Zhang, 2016).

The hazard function of this model for individual i is:

h(t, ψi ) =
βi
λi

(
t

λi

)βi−1

. (15)

• The vector of individual parameters is ψi = (λi , βi ) assumed to be

independent and lognormally distributed:

log(λi ) ∼ N (log(λpop), ω2
λ),

log(βi ) ∼ N (log(βpop), ω2
β).

(16)

Then, the vector of population parameters is

θ = (λpop, βpop, ω
2
λ, ω

2
β).

• Individual parameters for N = 100 individuals were generated using

model (16) with λpop = 10, ωλ = 0.3, βpop = 3 and ωβ = 0.3.

Then, repeated events were generated for each individual using the

Weibull model (15) and assuming a right censoring time τc = 20.
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MCMC convergence: RWM

• Noncontinuous model: We use Proposition 2
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Figure 7: Convergence of the empirical quantiles of order 0.1, 0.5 and 0.9

of p(ψi |yi ; θ) for a single individual. The reference MH algorithm is in blue

and the new version is in red.
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MCMC convergence: MALA

• MALA
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is in black.
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MCMC convergence: NUTS

• NUTS (with rstan package)
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ML Estimation

• With our new proposal (red) versus reference RWM (blue)
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Figure 10: Convergence of the sequences of estimates

(λ̂pop,k , 1 ≤ k ≤ 200) and (ω̂λ,k , 1 ≤ k ≤ 200) obtained with SAEM and

three different initial values using the reference MH algorithm (blue) and

the new proposal during the first 5 iterations (red).
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Monte Carlo Study

• Plot of the mean square distance over the replicates

Ek(`) =
1

M

M∑
m=1

(
θ

(m)
k (`)− θ(m)

K (`)
)2

. (17)
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Figure 11: Convergence of the sequences of mean square distances for

λpop and ωλ obtained with SAEM on M = 100 synthetic datasets using

the reference MH algorithm (blue) and the new proposal during the first 5

iterations (red).
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Conclusion

• Automatic and easy to implement proposal for MCMC sampler.

• Leverage the latent structure (random effects here).

• Computing the MAP for each individual is costly: coupling with

minibatch strategies (Subsampling MCMC) can be efficient for MLE.

• Would be interesting to try on high dimensional problems.

23



Thank you!
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Linear continuous model

• Let yi = (yi,1, . . . , yi,ni )
′ and εi = (εi,1, . . . , εi,ni )

′.

• Assume first a linear relationship between the observations yi and

the vector of individual parameters ψi :

yi = Aiψi + εi , (18)

where Ai is the design matrix for individual i and where ψi is

normally distributed around some value mi ψi ∼ N (mi , Ω).

• Then, the conditional distribution of ψi is a normal distribution:

ψi |yi ∼ N (µi , Γi ),

where

Γi =

(
A′iAi

σ2
+ Ω−1

)−1

,

µi = Γi

(
A′iyi
σ2

+ Ω−1mi

)
.

(19)
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Proof of Proposition 1

• Defining zi = yi − fi (ψ̂i ) +∇fi (ψ̂i )ψ̂i , the linearization yields

zi = ∇fi (ψ̂i )ψi + εi , (20)

• We use (19) to get an expression of the conditional variance of ψi

under the linearized model:

Varlin(ψi |yi ) =

(
∇fi (ψ̂i )∇fi (ψ̂i )

′

σ2
+ Ω−1

)−1

. (21)

• The MAP is defined as

ψ̂i = arg min
ψi

(
1

σ2
‖yi − fi (ψi )‖2 + (ψi −mi )

′Ω−1(ψi −mi )

)
,

• Thus, ψ̂i satisfies:

−∇fi (ψ̂i )
′

σ2

(
yi − fi (ψ̂i )

)
+ Ω−1(ψ̂i −mi ) = 0.
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Proof of Proposition 1

• Let Γi = Varlin(ψi |yi ). Using (19), we can now compute the

conditional mean of ψi under the linearized model:

Elin(ψi |yi ) = Γi
∇fi (ψ̂i )

′

σ2

(
yi − fi (ψ̂i ) +∇fi (ψ̂i )ψ̂i + Ω−1mi

)
= Γi

(
Ω−1(ψ̂i −mi ) +

∇fi (ψ̂i )
′∇fi (ψ̂i )

σ2
ψ̂i + Ω−1mi

)
= ΓiΓ

−1
i ψ̂i

= ψ̂i .

(22)
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Laplace Approximation

• Laplace approximation consists in approximating an integral of the

form

I :=

∫
ev(x)dx , (23)

where v is at least three times differentiable.

• Second order Taylor expansion of the function v around a point x0

v(x) ≈ v(x0) +∇v(x0)(x − x0) +
1

2
(x − x0)∇2v(x0)(x − x0), (24)

provides an approximation of the integral I (consider a multivariate

Gaussian probability distribution function which integral sums to 1):

I ≈ ev(x0)

√
(2π)p

| − ∇2v(x0)|
exp

{
−1

2
∇v(x0)′∇2v(x0)−1∇v(x0)

}
.

(25)
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Proof of Proposition 2

• In our context, we can write the marginal pdf p(yi ) that we aim to

approximate as

p(yi ) =

∫
p(yi , ψi )dψi =

∫
e log(p(yi ,ψi ))dψi . (26)

• Then, let

v(ψi ) = log(p(yi , ψi )) = log(p(yi |ψi )) + log(p(ψi )), (27)

and we do the Taylor expansion around the MAP ψ̂i that verifies by

definition ∇ log p(yi , ψ̂i ) = 0:

−2 log(p(yi )) ≈ −p log 2π−2 log p(yi , ψ̂i )+log
(∣∣∣−∇2 log p(yi , ψ̂i )

∣∣∣) .
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Proof of Proposition 2

• Approximation of the logarithm of the conditional pdf of ψi

evaluated at ψ̂i :

log(p(ψ̂i |yi )) ≈ −p

2
log 2π − 1

2
log
(∣∣∣−∇2 log p(yi , ψ̂i )

∣∣∣) ,
which is precisely the log-pdf of a multivariate Gaussian distribution

with mean ψ̂i and variance-covariance −∇2 log p(yi , ψ̂i )
−1,

evaluated at ψ̂i , and where

∇2 log p(yi , ψ̂i ) = ∇2 log(p(yi |ψ̂i )) + log(p(ψ̂i ))

= ∇2 log(p(yi |ψi )) + Ω−1.
(28)
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