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1 Problem statement

Population models are widely used in domains like pharmacometrics where we need to
model phenomena observed in each set of individuals. The population approach can be
formulated in statistical terms using mixed effect models. When the conditional expecta-
tion of the complete log likelihood is hard to compute, the Maximum Likelihood estimates
are obtained using a stochastic version of the EM algorithm. Yet, this method implies being
able to sample from the posterior distribution of the parameters given the observed data.
A Markov Chain Monte Carlo procedure can be used to perform this simulation.
Our contribution consists in accelerating this posterior sampling in order to improve the over-
all parameter estimation algorithm convergence properties.

Notations and Models
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• A natural decomposition of the joint distribution consists in writing:
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• p( 
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; ✓) is the so-called population distribution used to describe the distribution of the
individual parameters within the population.

• Incomplete log likelihood L(✓; y)
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• The ML estimate of ✓ is thus defined by:
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• Mixed Effect models. Describing each individual parameters  
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as a composition of
fixed effects, common to the whole population, and random effects as follows:
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With � a new vector of fixed effects and C

i

a matrix of individual covariates.

2 Maximum Likelihood Estimation

2.1 SAEM Algorithm coupled with MCMC procedure

In this incomplete data model context, the estimation algorithm consists in:
Algorithm 1 SAEM algorithm
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Theorem 2.1: Convergence of the SAEM coupled with MCMC
With certain assumptions of ergodicity and smoothness of the transition kernel used in the
MCMC:
1. if the complete model belongs to the exponential family and its sufficient statistics stay

in a compact, then the results of convergence of [B. Delyon and Moulines(1999)] holds
w.p.1.

2.2 Posterior sampling - Metropolis Hastings Algorithm

2.2.1 Continuous models

In the case where the outcomes are continuous and the individual parameters  
i

are nor-
mally distributed the model is defined by:
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and our new method is based on the linearisation of the structural model around the MAP
defined as ˆ
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Gaussian proposal for continuous models
• Taylor expansion of the structural

model around the MAP:
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• Resulting linear model between y
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• Tractable conditional distribution  
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2.2.2 Non Continuous models

As far as non continuous outcomes, there is no analytical relationship between the obser-
vations and the individual parameters and thus no linearisation can be applied. Here, the
strategy to build an efficient proposal consists in using a Laplace approximation of the joint
model as described in [Wolfinger(2017)] or [Y.(2007)].
Define l( 
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). We can derive the following Gaussian proposal:
Gaussian proposal for non continuous models
• Laplace approximation, around the
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• We obtain:
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• Gaussian proposal:
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• Fisher Approximation:
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• Combined to the Fisher identity, we
obtain:
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3 Numerical Application: Warfarin dataset

Warfarin is an anticoagulant normally used in the prevention of thrombosis and thromboem-
bolism, the formation of blood clots in the blood vessels and their migration elsewhere in the
body, respectively. In [RA. O’reilly(1968)], O’Reilly provide set of plasma warfarin concen-
trations and Prothrombin Complex Response in thirty normal subjects after a single loading
dose. A single large loading dose of warfarin sodium, 1.5 mg/kg of body weight, was ad-
ministered orally to all 32 subjects. Measurements were made each 12 or 24h. The dataset
can be found in Monolix and simulx R package.
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Figure 1: Warfarin concentration over time for 32 subjects.

PK model
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Where ka is he absorption rate constant, k is the elimination rate constant, V is the volume
of distribution and D is the dose administered.
In our notation, the complete model is p(y
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• Fast MCMC Convergence
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Figure 2: Convergence of quantiles (0.05, 0.5, 0.95).

• Fast SAEM Convergence
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Figure 3: Runs on Warfarin dataset (Left) and average error on 100 synthetic datasets (Right) Fast method
in red and reference in blue.
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