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Large Scale Optimization

• Objective: Constrained minimization problem of a fi-
nite sum of functions:

min
θ∈Θ
L(θ) :=

1

n

n∑
i=1

Li(θ) , (1)

where Li : Rp → R is bounded from below and is (possi-
bly) nonconvex and include a nonsmooth penalty. • The
gap ê(θ; {θi}ni=1) is L-smooth.

Asymptotic Stationary Point Condition:

f ′(θ,d) := lim
t→0+

f (θ + td)− f (θ)

t
≥ 0.

The MISO Method (Mairal, 2015)

• MISO has been proposed in (Mairal, 2015)

• Initialize the majorizing surrogate functions

A0
i (θ) := L̂i(θ;θ(0)), i ∈ [n].

• For k > 0:
• Pick ik uniformly from [n].
• Update Ak+1

i (θ) as:

Ak+1
i (θ) =

{
L̂i(θ;θ(k)), if i = ik

Aki (θ), otherwise.

• Set θ(k+1) ∈ argmin
θ∈Θ

1
n

∑n
i=1Ak+1

i (θ).

• Return: θ(k+1).

An Intractability for Latent Data Models

• Case when the surrogate functions computed in MISO
are not tractable. • Surrogate is expressed as an integral
over a set of latent variables z .

L̂i(θ;θ) :=

∫
Z

ri(θ;θ, zi)pi(zi ;θ)µi(dzi) . (2)

• Our scheme is based on the computation of
L̃i(θ;θ, {zm}Mm=1), a Monte Carlo approximation of the

surrogate function L̂i(θ;θ) defined by (2) such that:

L̃i(θ;θ, {zm}Mm=1) :=
1

M

M∑
m=1

ri(θ;θ, zm) , (3)

where {zmi }M−1
m=0 is a Monte Carlo batch.

MISSO: Minimization by Incremental Stochastic Surrogate Optimization

Idea: We replace the expectation in (2) by a Monte Carlo integration and then optimizes the objective function in an
incremental manner..

How does this Monte Carlo Approximation affects the convergence rate?

Global Convergence Analysis

• We bound the Monte Carlo noise by some constants using the notion of metric entropy (or bracketing number)

see Van der Vaart (2000): E
[

sup
f ∈F

∣∣∣ 1
M

∑M
i=1 f (zi ,m)− E[f (zi)]

∣∣∣] ≤ CL√
M

.

• Convergence Analysis: Assume L̂i(θ;θ) ≥ Li(θ) and the error gap follows ‖∇ê(θ; {θi}ni=1)‖2 ≤ 2L ê(θ; {θi}ni=1)

Theorem (MISSO Finite-Time Convergence) For any Kmax ≥ 1, K ∼ U([0,Kmax−1]) independent of the {ik}Kmax

k=0,
we have the global rate:

E
[
‖∇ê(K )(θ(K ))‖2

]
≤

∆(Kmax)

Kmax
and E[g−(θ(K ))] ≤

√
∆(Kmax)

Kmax
+
Cgr

Kmax
M (Kmax) . (4)

where
∆(Kmax) := 2nLE[L̃(0)(θ(0))− L̃(Kmax)(θ(Kmax))] + 4LCrM (Kmax) .

Logistic Regression on Hemorrhage

dataset

• Goal: Logistic Regression with missing values
on Traumabase (severe hemorrhage):

pi(yi |zi) = S(δ>z̄i)
yi
(

1− S(δ>z̄i)
)1−yi

,

• 16 quantitative measurements, like BMI, age,
blood pressure, heart rate at different stages after
the accident on 6384 patients • MISSO is an in-
cremental MCEM in this case
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Bayesian Neural Networks using

MISSO

• Goal: Train Bayesian variants of LeNet-5 and
ResNet-18 on MNIST and CIFAR10:
• Variational inference and the ELBO loss to fit
Bayesian Neural Networks on different datasets. •
MISSO is an incremental VI in this case
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