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Large Scale Optimization

e Objective: Constrained minimization problem of a fi-
nite sum of functions:

| I,
min L(0) := E/Z;ﬁ,(g) , (1)

where L; : R?P — R is bounded from below and is (possi-
bly) nonconvex and include a nonsmooth penalty. e The

gap €(0;{0;}"_,) is L-smooth.

Asymptotic Stationary Point Condition:
f(0+ td) — (0
(0, d) := lim (0 + td) — 7(6)

t—0T

> 0.

The MISO Method (Mairal, 2015)

e MISO has been proposed in (Mairal, 2015)

e [nitialize the majorizing surrogate functions
A%(0) = L£;(0;00), i e [n].
e For kK > 0O:

e Pick i uniformly from [n].
e Update A*"}(8) as:
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o Set 1) ¢ arg min+ > " AHO).
0co
e Return: 9<+1)

An Intractability for Latent Data Models

it 1=
otherwise.

e Case when the surrogate functions computed in MISO
are not tractable. e Surrogate Is expressed as an integral
over a set of latent variables z.

Z,-(H;E) — /Zr,-(H;E, z)pi(zi Q) wi(dz) . (2)

° Ou_r scheme I1s based on the computation of
Li(0;0,{z,}"_.), a Monte Carlo approximation of the
surrogate function £,(0; 8) defined by (2) such that:

M
Z/(H?a' {Zm}n/\jzl) = ﬁ r,-(H;E, Zm) (3)

m=1

where {z"}M-1is a Monte Carlo batch.
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MISSO: Minimization by Incremental Stochastic Surrogate Optimization

Idea: We replace the expectation in (2) by a Monte Carlo integration and then optimizes the objective function in an
iIncremental manner..

Algorithm 2 The MISSO method.

1: Input: initialization 8(?); a sequence of non-negative numbers { M (k) f o

2: Forall: € [1,n], draw M) Monte Carlo samples with the stationary distribution p;-; 6(9)).
3: Initialize the surrogate function as

A(0) := Li(6;0, (=3},

1,

), ¢ € [|1,n] .

4: for k =0,1,..., Knax do
5:  Pick a function index ¢ uniformly on |1, n|.
6:  Draw M ;) Monte Carlo samples with the stationary distribution i (+; Q(k)).
7:  Update the individual surrogate functions recursively as:
AF1(9) = {{@(9; 0%, {Zz-(,il}ﬂﬂffi)a it 1 = 1
z AX(6), otherwise.

8: Set 9(k+1) & arg 1'1111196@ E(Hl)(ﬂ) = '1'1_?, Z?:l Zf“(@)
9: end for

How does this Monte Carlo Approximation affects the convergence rate?

Global Convergence Analysis

e \We bound the Monte Carlo noise by some constants using the notion of metric entropy (or bracketing number)

see Van der Vaart (2000): E |sup ﬁz,/\il f(zim) — E[f(2)]]]| < f—%
feF

e Convergence Analysis: Assume Z,(0;0) > £,(8) and the error gap follows ||V&(6; {037 )|? < 2Le(0;{6,}",)

Theorem (MISSO Finite-Time Convergence) For any K. > 1, K ~ U(|0, Knax— 1]) independent of the {/’k}fffg,
we have the global rate:

<

. A A C,r
{,UIVG(K)(H(K))HZ] S /,éKmax) and 4:[9_(H(K))] S \/ /,éKmax) | g

where Ak i=2nl P[LO(9O)) — £Kmad(g(Kma)] 4 4ALCGMk,.) -

(Kmax) ) (4)
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e Goal: Logistic Regression with missing values
on Traumabase (severe hemorrhage):

v _ 1y
pilyilz) = S(6'z)" (1 - 5(8"2)) " .

e 16 quantitative measurements, like BMI, age,

blood pressure, heart rate at different stages after

the accident on 6384 patients ¢ MISSO is an in-
cremental MCEM in this case
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e Goal: Train Bayesian variants of LeNet-5 and
ResNet-18 on MNIST and CIFAR1O0:

e Variational inference and the ELBO loss to fit
Bayesian Neural Networks on different datasets. e
MISSO is an incremental VI in this case
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