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How to Learn in Latent Data Models?

Maximum Likelihood Approach

> We minimize the following nonconvex function on ©, a convex subset of R

Ieréi({)l Z(é’) = L(0) + r(6) where L(0) = %Zlﬁz(e) 1= %2}{ —log g(yi; 0) }

» T : 0 — R is asmooth convex regularization function
- ¢g(y;;0) is the marginal of the complete data likelihood — ¢(y;;60) = / f(zi,yi;0)u(dz;)
Z

Exponential Family Model

- {2i}iz1 are the (unobserved) latent variables.
~ The complete data likelihood belongs to the curved exponential family:
f(Zi,yz'; 9) — h(Zi,yz')eXP«S(Zi,yi)a ¢(9)> — ¢(9))

- where ¥(0), h(z,y:) are scalar functions, ¢(6) € R* s a vector function, and {S(z;,y;) € R¥}"_. are the
vector of sufficient statistics.



How to Learn in Latent Data Models?

Expectation Maximization (EM) Algorithm and Monte Carlo (MC) variant
>~ pbatch EM (bEM) method [DLR, 1977] is the method of reference. 2 steps:

> E-step: conditional expectation of the complete data - M-step: maximization of the complete data
sufficient statistics likelihood

S0)= 35000 50) = [ Seupalystn@s)  960)) = argmingeo {r(9) + v(0) - (5(0). 60}

» Monte Carlo EM (MCEM) method [WT, 1990] when the expectations are intractable

n M
- 1 1
MC- : — — — i.my Yi
C-step: S - ,21 Y, m§=1ﬁ5(z, Yi)
Caveats

~ Requires large MC samples M in order to converge.

» Do not scale to large n



Two-Time-Scale Stochastic EM

Algorithms Formulation

>~ TTSEM formulates as the combination of the two levels i SAEM Skt+l) — glk) 4 n—l(g.(k) _
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Algorithm 2 Two-Timescale Stochastic EM methods.

1: Input: 8(© « 0, §© « 50 {vk}k>0, {Pk}e>0 and K¢ € N*.
2: for k=0,1,2,..., Kf —1 do

3:  Draw index iy € [n| uniformly (and ji € [n] for iTTEM).
Compute S”ff) using the MC-step

Compute the surrogate sufficient statistics S
Compute S\*" and g(*k+1)

(k+1)

AN S

k k k
St(ts+1) — St(ts) T Pk+1 (8(k+1) — St(ts)

s+ = 8®) 4y 41 (Sye T - 80)

7. Update 8+1) = @(s(k+1)) via the M-step
8: end for

)




Intuition Behind The Two Stages

First Level: Variance Reduction

>~ Incremental updates to scale to large datasets —— [Neal and Hinton, 1998], [Bottou and Bousquet, 2008].

>~ Variance reduction to control variance induced by incremental sampling—— SVRG [Johnson et. al., 2013],
FIEM [Karimi et. al., 2019].

5(k) _ g(k+1) HZ]

» Temper the variance term  [E]|

~ Control variate, as we are using it here, can be used for other algorithms. See control variate for MCMC
[Brosse et. al., 2019].

Second Level: Control the MC Fluctuations

» Robbins-Monro update. Decreasing stepsize to smooth the iterates instead of increasing the number of Monte
Carlo samples

» Smaller Monte Carlo batchsize M.

» Averaging scheme (memory term in the drift term) —— [Ruppert, 1988] and [Polyak, 1990].



Numerical Applications
Gaussian Mixture Models (GMM)

> Fit a GMM model to a set of n observations
» Each of M components with unit variance 0 := (w, )
~ The complete log likelihood reads:

M M milm=1
log [ (2i,y5:0) = > Limy (21) [log (W) = p2/2] + D~ 1y (2i) pmyi + constant = {m } ey

M
0
- Penalization used: R(60) = 5 Z 12— log Dir(w; M, ¢)

m=1

Experiments

>~ Numerical: GMM with M=2 and @1 = —p2 = 0.5

» Fixed sample size: size n = 10° and
run to get #
Stepsize for sEM V& = 3/(k + 10)
Stepsize for iISAEM 7k = 1/k>O

> Compare to iIEM, seEM and Batch EM




Numerical Applications

Deformable Template for Image Analysis

» (Yi,i € [1,n)) iImages modeled as deformation of a template
» Deformable Template Model:

yi(s) = I (x5 — ®; (25)) + 05i(5) D;(1) = (Kgzi) ( ZK z,0) (2" (k), 2

where s is the pixel index, Zs its coordinate, I the template and ®;(-) the
deformation.
- Goal: Learn the vector of parameters 0 = (0,&,I") using TTSEM

USPS Digits dataset
» USPS Digits dataset featuring 1000, (16X16)-pixel images for each class of digits from 0 to 9.
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Kp, where  (Kp) (2 ):ZKP(QB,pk)f(k)



Thank You!



