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1 Problem statement

A wide class of statistical problems involves observed and unobserved data. We can
consider, for example, inverse problems concerning deconvolution, source separation,
change-points detection, etc. Linear and nonlinear mixed effects models can also be con-
sidered as incomplete-data models. Estimation of the parameters of these models is a
difficult challenge. In particular, the likelihood of the observations cannot usually be maxi-
mized in closed form. The EM algorithm proposed by Dempster, Laird and Rubin led to many
variants when the conditional expectation of the complete log-likelihood is intractable. The
MCEM (Meng, 1993) and the SAEM (Delyon, 1999) are two of them.
Following Neal, Hinton and Gunawardana efforts in justifying a variant version of the EM al-
gorithm considering an incremental scheme, we decided to focus on the Incremental EM,
MCEM and SAEM for continuous random variables.

2 Convergence Theorems

2.1 IEM algorithm
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Using Zangwill global convergence theorem allows us to write this first convergence theo-
rem.

Let {(✓t, �t
1

, . . . , �

t

N

)}1
k=0

be a sequence generated from a tuple (✓

0

, �

0

1

, . . . , �

0

N

) by the iterative
application, with its associated solution set L

IEM

= {(✓⇤, �⇤
1

, . . . , �

⇤
N

) 2 ⇥

N+1

, ✓

⇤ 2 L
EM

, ✓

⇤
=

�

⇤
1

= · · · = �

⇤
N

}, of the point-to-set map T = T

N

� · · · � T
1

, where T

i

= B � F
i

at each iteration t:

(✓

t

, �

t

1

, . . . , �

t

N

) = T (✓

t�1

, �

t�1

1

, . . . , �

t�1

N

)

Theorem 2.1: IEM convergence theorem

Let T : ⇥
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N+1 be the composition of the point-to-set maps B and F
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as defined in
the algorithm.
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2.2 IMCEM algorithm

One important assumption is needed in order to use the deterministic mapping T to prove
the convergence of the stochastic one P
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Theorem 2.2: IMCEM convergence theorem

With certain assumptions of compactness and continuity and a sequence of parameter
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} satisfying the IMCEM algorithm:
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3 Incremental Algorithms in Practice

3.1 IMCEM on a simple Gaussian case

Let’s consider the case when all the variables of interest are Gaussian.
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The goal is to find an estimate of the mean ✓ that maximizes the likelihood p(y, ✓) considering
that �2 and ✏

2 are known.
We can now apply our maximization step:
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If we define the vector of parameter as follow (with k = N + j):
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1

+ ē
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Now if we consider a scheme where not only one individual is picked at each iteration but
a batch pN (where p is a percentage). In that case we can write in scalar (to facilitate the
notation we’ll consider M=1 and ȳ = 0):
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In that case we can calculate the expectation and the variance of our estimator ✓
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stationary regime:

E[✓
k

] = ⇢

k/p

✓

0

(1)

Var ✓
k

=

�

2

N(1� ⇢)

2

1� ⇢

1/p

1 + ⇢

1/p

(2)

With these two expressions we understand what strategy is best for the choice of the batch
size at each iteration. Indeed the bias is small when p is small so one should start with pick-
ing one individual first to kill the bias and the variance is decreasing when p is increasing.
So once the bias is killed one should increase the size of the batch to kill the variance of the
estimator.

This result implies as well that the Online EM algorithm introduced by (Cappe and Moulines,
2007) is the best strategy to follow even when all the data is initially available. In other
words, even though one has access to the whole observed dataset, one should consider
increasing batch of individuals at each iteration.
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Figure 1: Incremental MCEM for 50 replicates

3.2 ISAEM on a PK-PD dataset

We use an example used by P. Girard and F. Mentre for the symposium dedicated to Com-
parison of Algorithms Using Simulated Data Sets and Blind Analysis, that took place in Lyon,
France, September 2004.
The dataset contains 100 individuals, each receiving 3 different doses:(0, 10, 90), (5, 25, 65) or
(0, 20, 30). It was assumed that doses were given in a cross-over study with sufficient wash out
period to avoid carry over. Responses y

ij

were simulated with the following pharmacody-
namic model:
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Figure 2: Incremental SAEM for 50 replicates

4 Conclusion

We’ve shown convergence of incremental versions of the EM and stochastic EM algorithms
but incremental variants also imply choice of the individuals at each iteration and the size
of the number of individuals considered.
Even though Neal and Hinton showed that incremental EM was optimally fast when only
one observation was considered at each iteration, stochastic versions behave differently.
Current work is focusing on this aspect.
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