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Abstract

Many nonconvex optimization problems can be solved using the Majorization-
Minimization (MM) algorithm that consists in upper bounding, at each iteration
of the algorithm, the objective function by a surrogate that is easier to minimize.
When the objective function can be expressed as a large sum of individual losses,
incremental version of the MM algorithm is often used. However, in many cases
of interest (Generalized Linear Mixed Model or Variational Bayesian inference)
those surrogates are intractable. In this contribution, we propose a generalization of
incremental MM algorithm using Monte Carlo approximation of these surrogates.
We establish the convergence of our unifying scheme for possibly nonconvex
objective. Finally, we apply our new framework to train a logistic regression and
a Bayesian neural network on the MNIST dataset and compare its convergence
behaviour with state-of-the-art optimization methods.

1 Introduction

We are interested in the constrained minimization of a large sum of nonconvex functions defined as:

min
θ∈Θ

[
f(θ) ,

N∑
i=1

fi(θ)

]
(1)

where Θ is a convex subset of Rp, for all i ∈ JNK, fi : Rp → R are continuously differentiable,
bounded from below and possibly nonconvex. In this paper, we solve this minimization problem
using an MM algorithm [Lange, 2016, Razaviyayn et al., 2013] which works by finding iteratively a
surrogate function that majorizes the objective function. By minimizing at each iteration the surrogate
function, we drive the objective function downwards until convergence to a stationary point. MM
algorithms become very popular in machine learning and computational statistics [Lange, 2016].
Examples include the proximal gradient algorithm [Beck and Teboulle, 2009, Parikh and Boyd,
2014], the Expectation-Maximization (EM) algorithm [McLachlan and Krishnan, 2007] and some
variational inference methods [Wainwright and Jordan, 2008].

When the objective function is a finite-sum, [Mairal, 2015] developed an incremental MM scheme,
called MISO, taking advantage of the finite-sum structure with a cost per iteration that is independent
of N . Incremental methods have recently become very popular; in particular these methods proved to
be an essential component to develop variance reduced stochastic gradient methods [Le Roux et al.,
2012, Defazio et al., 2014]. See [Mairal, 2015] and the references therein.

However, the MISO framework rests upon the computation of tractable surrogates such as quadratic or
variational functions. Yet, in many cases, those surrogates are intractable and need to be approximated.
For instance, in the Bayesian machine learning literature [Ghahramani, 2015], uncertainty is put
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on the parameters, which optimization problem boils down to finding the true distribution of those
parameters given any observed data. To this end, variational inference methods, as approximate
inference methods, [Ranganath et al., 2014, Kingma and Welling, 2013] have been extensively
studied to find an approximation of this distribution which can also be used as a proposal for an
exact sampler [Girolami and Calderhead, 2011, de Freitas et al., 2001]. More recently, Bayesian
neural networks [Neal, 2012, I. Goodfellow and Courville, 2016], vastly studied in [Gal, 2016,
Blundell et al., 2015, Mullachery et al., 2018, Polson and Sokolov, 2017, D. J. Rezende and Wierstra,
2014], can produce probabilistic guarantees on their predictions and also generate the distribution
of the parameters that it has learnt from the observations. These two characteristics make them
highly attractive to theoreticians as well as practitioners. Variational inference methods mentioned
above, are extensively used [B. Trippe, 2018, Pawlowski et al., 2017, Y. Li, 2017] for training such
neural network. To scale to large datasets, this optimization is typically performed using Stochastic
Gradient Descent (SGD), one of its variants [Bottou et al., 2016] or using the Stochastic Variational
Inference algorithm proposed in [Hoffman et al., 2013], and its variants [Kucukelbir et al., 2017,
Titsias and Lázaro-Gredilla, 2014, Kingma and Welling, 2013] which approximates the full gradient
from mini-batches. Ultimately, MISO convergence guarantees can not be applied on those cases
where approximation of surrogates are used and they often rely on Robbins and Monro [Robbins and
Monro, 1951] convergence results for stochastic optimization.

In Generalized Linear Mixed Models, Maximum Likelihood Estimation is performed to fit the
parameters of a model to the observed data. Random effects are considered as latent variables and
the optimization procedure requires augmenting the observed data with the latent structure. The EM
algorithm [McLachlan and Krishnan, 2007] is a reference method to execute this task. In particular,
the Incremental EM, introduced by [Neal and Hinton, 1998], updates upper-bounds of the negated
log-likelihood incrementally and can be shown to be a special case of the MISO framework. When
those upper-bounds are intractable, the MCEM [Wei and Tanner, 1990] algorithm optimizes their
Monte Carlo integrations. While many convergence results of this algorithm have been provided
[Fort and Moulines, 2003, Neath, 2012], its mini-batch version is not guaranteed to converge.

In this contribution, we propose an incremental MM algorithm, called MISSO (Minimization by
Incremental Stochastic Surrogate Optimization) when the natural surrogate functions are intractable
and should be approximated, for example by Monte Carlo integration. We present a unifying
framework in which the mini-batch MCEM and the mini-batch Variational Inference algorithm, an
extension of the Stochastic Variational Inference that incorporates a memory of previous gradients,
fall under and provide convergence guarantees of the objective function. Finally, we apply our
incremental MM scheme to train a logistic regression on synthetic data and a Bayesian neural network
on MNIST dataset [LeCun and Cortes, 2010] to highlight the effectiveness of our method.

2 Incremental minimization of large sum of nonconvex functions

Beforehand, let T (Θ) be a neighborhood of Θ and assume that:

M 1. For all i ∈ JNK, fi is continuously differentiable on T (Θ).

M 2. For all i ∈ JNK, fi is bounded from below, i.e. there exist a constant Mi ∈ R such as for all
θ ∈ Θ, fi(θ) ≥Mi.

For any θ ∈ Θ and i ∈ JNK, we say, following [Mairal, 2015] that a function fi,θ : Rp → R is a
surrogate of fi at θ if the following properties are satisfied:

S.1 the function ϑ→ fi,θ(ϑ) is continuously differentiable on T (Θ)

S.2 for all ϑ ∈ Θ, fi,θ(ϑ) ≥ fi(ϑ) , fi,θ(θ) = fi(θ) and ∇fi,θ(ϑ)
∣∣∣
ϑ=θ

= ∇fi(ϑ)
∣∣∣
ϑ=θ

.

The gap fi,θ−fi plays a key role in the convergence analysis and we require this error to be L-smooth
for some constant L > 0 in the following sense:

Definition 1. (L-smooth functions) A function f : Θ→ R is called L-smooth when it is differen-
tiable and when its gradient∇f is L-Lipschitz continuous.

Denote by 〈·, ·〉 the scalar product, we also introduce the following stationary point condition:
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Definition 2. (Asymptotic Stationary Point Condition)
A sequence (θk)k≥0 satisfies the asymptotic stationary point condition if

lim inf
k→∞

inf
θ∈Θ

〈∇f(θk), θ − θk〉
‖θ − θk‖2

≥ 0. (2)

The incremental scheme of [Mairal, 2015] computes surrogate func-
tions, at each iteration of the algorithm, for a mini-batch of components:

Algorithm 1 MISO algorithm
Initialization: given an initial parameter estimate θ0, for all i ∈ JNK compute a surrogate function
ϑ→ fi,θ0(ϑ).
Iteration k: given the current estimate θk−1:

1. Pick a set Ik uniformly on {A ⊂ JNK, card(A) = p}
2. For all i ∈ Ik and compute ϑ→ fi,θk−1(ϑ), a surrogate of fi at θk−1.

3. Set θk ∈ arg min
ϑ∈Θ

∑N
i=1 a

k
i (ϑ) where aki (ϑ) are defined recursively as follows:

aki (ϑ) ,

{
fi,θk−1(ϑ) if i ∈ Ik
ak−1
i (ϑ) otherwise

(3)

For all i ∈ JNK and ϑ ∈ Θ, aki (ϑ) = fi,θτi,k (ϑ) where for all i ∈ JNK, τi,0 = 0 and k ≥ 1 the
indices τi,k are defined recursively as follows:

τi,k = k − 1 if i ∈ Ik and τi,k = τi,k−1 otherwise (4)

Let
(
θk
)
k≥1

be a sequence generated from θ0 ∈ Θ by the iterative application described by Algorithm
1 then, in [Mairal, 2015], almost sure convergence of the sequence

(
f(θk)

)
k≥1

is established and(
θk
)
k≥1

is shown to satisfy the Asymptotic Stationary Point Condition.

2.1 Minimization by Incremental Stochastic Surrogate Optimization (MISSO) scheme

In this section, we introduce an incremental scheme when the surrogate functions computed in
Algorithm 1 are not tractable. We assume that the surrogate can be expressed as an integral over
a set of latent variables, denoted z = (zi ∈ Zi, i ∈ JNK) ∈ Z where Z =×N

i=1
Zi where Zi is a

subset of Rmi . For all i ∈ JNK, let µi be a σ-finite measure on the Borel σ-algebra Zi = B(Zi),
Pi = {pi(zi, θ); θ ∈ Θ} be a family of probability densities with respect to µi, and ri : Zi ×Θ→ R
be functions such that:

fi,θ(ϑ) ,
∫
Zi

ri,θ(zi, ϑ)pi(zi, θ)µi(dzi) for all (θ, ϑ) ∈ Θ2. (5)

The surrogate function denoted fi,θ(ϑ) is fully defined by the pair (ri,θ(zi, ϑ), pi(zi, θ)).
Example (Incremental EM). The Expectation-Maximization (EM) algorithm is the reference method
to perform Maximum Likelihood Estimation in incomplete data problem [McLachlan and Krishnan,
2007]. Let {ci(zi, θ), θ ∈ Θ} be a family of positive µi-integrable Borel functions on Zi. Define, for
all i ∈ JNK and θ ∈ Θ, gi(θ) ,

∫
Zi
ci(zi, θ)µi(dzi). In the missing data context, ci(zi, θ) is the joint

likelihood of the observations and the latent data referred to as the complete likelihood and gi(θ) is
the likelihood of the observations (in which the latent variables are marginalized). The incremental
EM algorithm falls into the incremental MM framework outlined above. In such case, for i ∈ JNK
and θ ∈ Θ the loss function fi(θ) is the negated incomplete log-likelihood fi(θ) , − log gi(θ), for
ϑ ∈ Θ the surrogate function fi,θ(ϑ) is defined by the pair (ri,θ(zi, ϑ), pi(zi, θ)) such as:

ri,θ(zi, ϑ) , log (pi(zi, θ)/ci(zi, ϑ)) and pi(zi, θ) , ci(zi, θ)/gi(θ) if gi(θ) 6= 0 (6)

With these notations, the MISO algorithm outlined in Algorithm 1 coincides with the incremental EM
algorithm introduced in the pioneering paper [Neal and Hinton, 1998] by Neal and Hinton.
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Example (Incremental Variational Inference for latent data model). Let x = (xi, i ∈ JNK) and
y = (yi, i ∈ JNK) be i.i.d. input-output pairs and w be a global latent variable taking values in W
as subset of RJ . A natural decomposition of the joint distribution is:

p(y, x, w) = p(w)

N∏
i=1

pi(yi|xi, w) (7)

The goal is to calculate the posterior distribution p(w|y, x). Variational inference algorithm consists
in minimizing the Kullback Leibler (KL) divergence between a candidate family of parametric
distributions {q(w, θ), θ ∈ Θ ⊂ Rd} and the posterior distribution p(w|y, x) of the global latent
variable w. In most implementations, q(w; θ) belongs to a simple family of distributions such as
the multivariate Gaussian family with mean ρ and covariance matrix σ2 Id in which case θ =
(ρ, σ2) ∈ Θ = R× R∗+. The variational inference problem boils down to minimizing the following
KL divergence:

θ∗ = arg min
θ∈Θ

KL(q(w; θ) ‖ p(w|y, x)) = arg min
θ∈Θ

f(θ) (8)

where for all θ ∈ Θ, f(θ) =
∑N
i=1 fi(θ) with :

fi(θ) , −
∫
W

q(w; θ) log pi(yi, xi|w)dw +
1

N
KL(q(w; θ) ‖ p(w)) = ri(θ) + d(θ) (9)

Even though this procedure makes inference analytical for a large class of models, it still lacks in
many ways. This technique does not scale to large data (evaluating the reconstruction term (9)
requires calculations over the entire dataset) and the approach does not adapt to complex models
(models in which this last integral cannot be evaluated analytically) such as Bayesian neural networks
[Neal, 2012, Gal, 2016]. Monte Carlo integration and mini-batch strategies, as in [Hoffman et al.,
2013, Titsias and Lázaro-Gredilla, 2014, Kucukelbir et al., 2017, Kingma and Welling, 2013] are
thus preferred here. Optimization of this criterion can be performed using our incremental stochastic
surrogate optimization framework. We use the following quadratic surrogate at θ ∈ Θ:

fi,θ(ϑ) , fi(θ) +∇fi(θ)>(ϑ− θ) +
L

2
‖ϑ− θ‖22 (10)

where ‖·‖2 is the `2-norm and L is an upper bound of the spectral norm of the Hessian of fi at θ. The
gradient∇fi(θ) can be computed several ways [Paisley et al., 2012]. We use the reparametrization
trick suggested in [Kingma and Welling, 2013, Blundell et al., 2015]. For θ ∈ Θ and e ∈ Rd, let
t : Θ×Rd 7→ Rd be a function and φ be the density of the standard multivariate normal distribution
Nd(0, Id). We assume that for all θ ∈ Θ, the distribution of the random vector W = t(θ, ε) where
ε ∼ Nd(0, Id) has a density q(·, θ). Then, following [Blundell et al., 2015, Proposition 1]:

∇
∫
W

log pi(yi, xi|w)q(w, θ)dw =

∫
W

J(θ, e)∇ log pi(yi, xi|t(θ, e))φ(e)de

where for each e ∈ Rd, J(θ, e) is the Jacobian of the function t(·, e) with respect to θ. Note that
we abuse the ∇ notation to maintain consistency with the rest of the text (instead of switching to ∂).
Consequently, the pair (ri,θ(e, ϑ), φ(e)) defining fi,θ(ϑ) is given by:

ri,θ(e, ϑ) , (− log pi(yi, xi|t(θ, e)) + d(θ))

+ (− J(θ, e)∇ log pi(yi, xi|t(θ, e)) +∇d(θ))
>

(ϑ− θ) +
L

2
‖ϑ− θ‖22 (11)

Our scheme is based on the computation, at each iteration, of stochastic auxiliary functions for a
mini-batch of components. For i ∈ JNK, the auxiliary function, noted f̂i,θ(ϑ) is a Monte Carlo
approximation of the surrogate function fi,θ(ϑ) defined by (5) such that:

f̂i,θ(ϑ) ,
1

M

M−1∑
m=0

ri,θ(z
m
i , ϑ) for all (θ, ϑ) ∈ Θ2 (12)

where {zmi }
M−1
m=0 is a Monte Carlo batch. In simple scenarios, the samples {zmi }

M−1
m=0 are conditionally

independent and identically distributed with distribution pi(zi, θ). Nevertheless, in many cases,
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sampling exactly from this distribution is not an option and the Monte Carlo batch is sampled by
Monte Carlo Markov Chains (MCMC) algorithm. The MISSO algorithm can be summarized as
follows:

Algorithm 2 MISSO algorithm
Initialization: given an initial parameter estimate θ0, for all i ∈ JNK compute the function ϑ →
f̂i,θ0(ϑ) defined by (12).
Iteration k: given the current estimate θk−1:

1. Pick a set Ik uniformly on {A ⊂ JNK, card(A) = p}

2. For all i ∈ Ik, sample a Monte Carlo batch {zk,mi }Mk−1
m=0 from pi(zi, θ

k−1).

3. For all i ∈ Ik, compute the function ϑ→ f̂i,θk−1(ϑ) defined by (12).

4. Set θk ∈ arg min
ϑ∈Θ

∑N
i=1 â

k
i (ϑ) where âki (ϑ) are defined recursively as follows:

âki (ϑ) ,

{
f̂i,θk−1(ϑ) if i ∈ Ik
âk−1
i (ϑ) otherwise

(13)

Whether we use Markov Chain Monte Carlo or direct simulation, we need to control the supremum
norm of the fluctuations of the Monte Carlo approximation. Let i ∈ JNK, {ji(zi, ϑ), zi ∈ Zi, ϑ ∈ Θ}
be a family of measurable functions, λi a probability measure on Zi ×Zi. We define:

Ci(ji) , sup
θ∈Θ

sup
M>0

M−1/2Ei,θ

[
sup
ϑ∈Θ

∣∣∣∣∣
M−1∑
m=0

{
ji(z

m
i , ϑ)−

∫
Zi

ji(zi, ϑ)pi(zi, θ)λi(dzi)

}∣∣∣∣∣
]

(14)

M 3. For all i ∈ JNK and θ ∈ Θ:

lim
k→∞

Ci(ri,θ) <∞ and lim
k→∞

Ci(∇ri,θ) <∞. (15)

When this approximation is done using an MCMC procedure to perform a Monte Carlo integration,
the assumption M 3 is based on maximal inequality for beta-mixing sequences obtained in [Doukhan
et al., 1995]. This condition can be translated in terms of drift and minorization conditions (see [Meyn
and Tweedie, 2009]). Finally, we consider the following assumption on the number of simulations:

M 4. {Mk}k≥0 is a non deacreasing sequence of integers which satisfies
∑∞
k=0M

−1/2
k <∞.

Lemma 1. Let (Vk)k≥0 be a non negative sequence of random variables such that E[V0] < ∞.
Let (Xk)k≥0 a non negative sequence of random variables and (Ek)k≥0 be a sequence of random
variables such that

∑∞
k=0 E[|Ek|] <∞. If for any k ≥ 1:

Vk ≤ Vk−1 −Xk + Ek (16)

then:

(i) for all k ≥ 0, E[Vk] <∞ and the sequence (Vk)k≥0 converges a.s. to a finite limit V∞.

(ii) the sequence (E[Vk])k≥0 converges and lim
k→∞

E[Vk] = E[V∞].

(iii) the series
∑∞
k=0Xk converges almost surely and

∑∞
k=0 E[Xk] <∞.

Proof. The proof is postponed to the appendix

Remark 1. Note that the result still holds if (Vk)k≥0 is a sequence of random variables which is
bounded from below by a deterministic quantity M ∈ R.
Theorem 1. Assume M1-M4. Let

(
θk
)
k≥1

be a sequence generated from θ0 ∈ Θ by the iterative
application described by Algorithm 2. Then:

(i)
(
f(θk)

)
k≥1

converges almost surely.
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(ii)
(
θk
)
k≥1

satisfies the Asymptotic Stationary Point Condition.

Proof. The proof is postponed to the appendix

Example (Incremental MCEM). In most cases, the surrogate of the incremental EM algorithm
defined as:

fi,θ(ϑ) ,
∫
Zi

log
pi(zi, θ)

ci(zi, ϑ)
pi(zi, θ)µi(dzi) for all i ∈ JNK and (θ, ϑ) ∈ Θ2. (17)

is intractable. With our notations, we define the Monte Carlo approximation of this surrogate as:

f̂i,θ(ϑ) ,
1

M

M−1∑
m=0

log
pi(z

m
i , θ)

ci(zmi , ϑ)
for all i ∈ JNK and (θ, ϑ) ∈ Θ2. (18)

where {zmi }
M−1
m=0 is a Monte Carlo batch sampled from pi(zi, θ) using an MCMC procedure. The

MISSO algorithm coincides with the mini-batch version of the MCEM algorithm which yields, at
iteration k, the following update of the parameter:

θk ∈ arg min
ϑ∈Θ
−

N∑
i=0

1

Mτi,k

Mτi,k
−1∑

m=0

log ci(z
τi,k+1,m
i , ϑ) (19)

where {zτi,k+1,m
i }M−1

m=0 is a Monte Carlo batch sampled from pi(zi, θ
τi,k).

Example (Incremental Variational Inference for latent data model). The MISO surrogate defined
for all (ϑ, θ) ∈ Θ2 by the pair (ri,θ(e, ϑ), φ(e)) with ri,θ(e, ϑ) defined by (11) is often intractable.
The MISSO algorithm coincides with a mini-batch version of the Variational Inference algorithm. At
iteration k, the MISSO algorithm consists in:

1. Picking a set Ik uniformly on {A ⊂ JNK, card(A) = p}.

2. Sampling a Monte Carlo batch {εk,m}Mk−1
m=0 from the standard Gaussian distribution.

3. Setting θk = 1
N

∑N
i=1 θ

τi,k − 1
NL

∑N
i=1 â

k
i where âki are defined recursively as follows:

âki ,

{
− 1
Mk

∑Mk−1
m=0 J(θ, ek,m)∇θ log pi(yi, xi|t(θ, ek,m)) +∇d(θk−1) if i ∈ Ik

âk−1
i otherwise

(20)

where ri,θk−1(ek,m, θ) is defined by (11).
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3 Numerical Applications

3.1 Fitting a logistic regression for a binary variable

The model. Let y = (yi, i ∈ JNK) be the vector of binary responses where for each individual i,
yi = (yij , 1 ≤ j ≤ ni) is a sequence of conditionally independent random variables taking values in
{0, 1} which corresponds to the j-th responses for the i-th subject. We consider a logistic regression
problem in which the parameters depend upon each individual i. Denote by zi = (zi,p) ∈ Rp
the vector of regression coefficients (the latent data) for individual i and ((dij), 1 ≤ j ≤ ni) the
associated explanatory variables. The conditional distribution of the observations yi given the latent
variables zi is given by:

logit(P(yij = 0|zi)) = d>ijzi

For all i ∈ JNK, we assume that zi are independedn and marginally distributed according toN (β,Ω).
The complete log-likelihood is expressed as:

log c(z, θ) ∝
N∑
i=1

ni∑
j=1

{yijd>ijzi − log(1 + ed
>
ijzi)}−

N∑
i=1

1

2
log(|Ω|) +

1

2
Tr
(
Ω−1(zi − β)(zi − β)>

)
We want to compute the maximum likelihood estimator for the parameter θ which maximizes the
incomplete likelihood

∫
Z
c(z, θ)

∏N
i=1 φ(zi;β,Ω)dzi where φ(zi;β,Ω) is the density of a multivari-

ate Gaussian variable with mean β and covariance Ω. Since the expectation of the complete log
likelihood with respect to the conditional distribution of the latent variables given the observations
is intractable, we use the MISSO algorithm. Computing the surrogates, defined by (18), requires
to simulate random draws from this conditional distribution. For this purpose, we use the saemix
R package [Comets et al., 2017] to run a Metropolis-Hastings within Gibbs sampler [Brooks et al.,
2011]. Furthermore, this model belongs to the curved exponential family [Keener, 2010] where for all
i ∈ JNK; the complete data sufficient statistics are given by S̃i(zi) , (zi, z

>
i zi). At the k-th iteration,

the MISSO algorithm consists in picking a set Ik, sampling a Monte Carlo batch {zk,mi }Mk−1
m=0 for

i ∈ Ik and computing the quantities (s1,k
i , s2,k

i ) as follows:

(s1,k
i , s2,k

i ) =

{(
1
Mk

∑Mk−1
m=0 zk,mi , 1

Mk

∑Mk−1
m=0 (zk,mi )>zk,mi

)
if i ∈ Ik

(s1,k−1
i , s2,k−1

i ) otherwise
(21)

and finally setting βk = 1
N

∑N
i=1 s

1,k
i and Ωk = 1

N

∑N
i=1 s

2,k
i − (βk)>βk (see section 2 of the

appendix material for more details).

Simulation and runs. In the sequel, p = 3, N = 1200 and for all i ∈ JNK, ni = 15. For
all i ∈ JNK and j ∈ JniK, we take dij,1 = 1, dij,2 = −20 + (j − 1) ∗ 5 and for i ∈ JNK
dij,3 = 10d3i/Ne. The data are generated using the following values for the fixed and random effects
(β1 = −4, β2 = −0.5, β3 = 1, ω1 = 0.3, ω2 = 0.2, ω3 = 0.2). The size of the Monte Carlo batch
increases polynomially, Mk ,M0 + k2 with M0 = 50. Figure 1 shows the convergence of the fixed
effects (β1, β2, β3) estimates obtained with both the MCEM and the mini-batch MCEM algorithms
using our MISSO scheme (19) for different batch sizes.

Figure 1: (Incremental MCEM) Convergence of the vector of fixed parameters β for different batch
sizes function of passes over the data.
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3.2 Variational inference for Bayesian neural network

In this section, we apply variational inference for a 2-layer Bayesian neural network on the MNIST
dataset [LeCun and Cortes, 2010] with our MISSO scheme. The training set is composed of
N = 60 000 handwritten digits, 28× 28 images, d = 784. Our neural network is composed of an
input layer with d = 784 units, a single hidden layer of p = 100 hyperbolic tangent units and a final
softmax output layer with K = 10 classes.

We use the framework developed in Example 2.1 with p(w) = N (0, Id) and p(yi|xi, w) =
Softmax(f(xi, w)) where f is the two layer model described above. The variational distribution
q(w, θ) is set to be the multivariate Gaussian distribution N (ρ, σ2 Id). At the k-th iteration, the
update of the MISSO algorithm is given by (20).

We compare the convergence behaviors of the following state of the art optimization algorithms, using
their vanilla implementations on TensorFlow [Abadi et al., 2015]: the SGD [Kiefer and Wolfowitz,
1952], the ADAM [Kingma and Ba, 2014], the SAG [Le Roux et al., 2012] and the Momentum
[Sutskever et al., 2013] algorithms versus our MISSO update with a constant learning rate of 10−5.
The loss function (9) and its gradients were computed by Monte Carlo integration using Edward
library [Tran et al., 2016], based on the reparametrization trick. We run those algorithms using 1%
and 10% of the training set. Figure 2 shows the convergence of the objective function through the
epochs. For both mini-batch sizes, our framework does better than SGD and ADAM. Similar rates
are observed between MISSO and Momentum which makes sense given the similarities in the update
step.

Figure 2: (Incremental Variational Inference) Convergence of the negated ELBO for 40 epochs over
the training set. Runs for two different mini-batch sizes (1% left and 10% right).

4 Conclusion

In this paper, we have presented a unifying framework for minimization by incremental surrogate
optimization when the surrogate functions are intractable and need to be approximated by Monte
Carlo. Our approach covers a large class of nonconvex optimization algorithms used in machine
learning, such as mini-batch version of the MCEM and the Variational Bayes inference algorithms.
We provided proofs of convergence. Compared to the state-of-the-art algorithms, the incremental
approach reduces significantly the variance.

Non asymptotic convergence results for both convex and nonconvex objective functions can be
obtained and will be reported in future works.
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A Proofs

A.1 Proof of Lemma 1

We first show that for all k ≥ 0, E[Vk] <∞. Note indeed that:

0 ≤ Vk ≤ V0 −
k∑
j=1

Xj +

k∑
j=1

Ej ≤ V0 +

k∑
j=1

Ej (22)

showing that E[Vk] ≤ E[V0] + E
[∑k

j=1Ej

]
<∞.

Since 0 ≤ Xk ≤ Vk−1 − Vk + Ek we also obtain for all k ≥ 0, E[Xk] < ∞. Moreover, since
E
[∑∞

j=1 |Ej |
]
<∞, the series

∑∞
j=1Ej converges a.s. We may therefore define:

Wk = Vk +

∞∑
j=k+1

Ej (23)

Note that E[|Wk|] ≤ E[Vk] + E
[∑∞

j=k+1 |Ej |
]
<∞. For all k ≥ 1, we get:

Wk ≤ Vk−1 −Xk +

∞∑
j=k

Ej ≤Wk−1 −Xk ≤Wk−1

E[Wk] ≤ E[Wk−1]− E[Xk]

(24)

Hence the sequences (Wk)k≥0 and (E[Wk])k≥0 are non increasing. Since for all k ≥ 0, Wk ≥
−
∑∞
j=1 |Ej | > −∞ and E[Wk] ≥ −

∑∞
j=1 E[|Ej |] > −∞, the (random) sequence (Wk)k≥0

converges a.s. to a limit W∞ and the (deterministic) sequence (E[Wk])k≥0 converges to a limit w∞.
Since |Wk| ≤ V0 +

∑∞
j=1 |Ej |, the Fatou lemma implies that:

E[lim inf
k→∞

|Wk|] = E[|W∞|] ≤ lim inf
k→∞

E[|Wk|] ≤ E[V0] +

∞∑
j=1

E[|Ej |] <∞ (25)

showing that the random variable W∞ is integrable.

In the sequel, set Uk ,W0 −Wk. By construction we have for all k ≥ 0, Uk ≥ 0, Uk ≤ Uk+1 and
E[Uk] ≤ E[|W0|] + E[|Wk|] <∞ and by the monotone convergence theorem, we get:

lim
k→∞

E[Uk] = E[ lim
k→∞

Uk] (26)

Finally, we have:

lim
k→∞

E[Uk] = E[W0]− w∞ and E[ lim
k→∞

Uk] = E[W0]− E[W∞] (27)

showing that E[W∞] = w∞ and concluding the proof of (ii). Moreover, using (24) we have that
Wk ≤Wk−1 −Xk which yields:

∞∑
j=1

Xj ≤W0 −W∞ <∞

∞∑
j=1

E[Xj ] ≤ E[W0]− w∞ <∞
(28)

which concludes the proof of the lemma.
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A.2 Proof of theorem 1

A.2.1 Proof of (i)

Set for all ϑ ∈ Θ, i ∈ JNK and k ≥ 1:

aki (ϑ) , fi,θτi,k (ϑ) and āk(ϑ) =

N∑
i=1

aki (ϑ) (29)

where the function fi,θτi,k is defined by (5) and τi,k is defined by (4). For any k ≥ 1 and θ ∈ Θ the
following decomposition plays a key role:

âk(ϑ) = âk−1(ϑ) +
∑
i∈Ik

{f̂i,θk−1(ϑ)− âk−1
i (ϑ)} (30)

where for all ϑ ∈ Θ, i ∈ JNK and k ≥ 1:

âki (ϑ) , f̂i,θτi,k (ϑ) and âk(ϑ) =

N∑
i=1

âki (ϑ) (31)

Set the following notations:

Vk , āk(θk),

Xk ,−
∑
i∈Ik

{fi,θk−1(θk−1)− ak−1
i (θk−1)},

Ek ,
∑
i∈Ik

{f̂i,θk−1(θk−1)− fi,θk−1(θk−1)}

+
∑
i∈Ik

{ak−1
i (θk−1)− âk−1

i (θk−1)}

+ āk(θk)− âk(θk) + âk−1(θk−1)− āk−1(θk−1).

Combining (30) with āk(θk) = āk(θk)− âk(θk) + âk(θk) and âk(θk) ≤ âk(θk−1), we obtain:

Vk ≤ Vk−1 −Xk + Ek. (32)

where ak−1
i and āk are defined in (29). We now check the assumptions of Lemma 1. Note first that

the sequence (Vk)k≥0 is bounded from below under assumption M 2. We now check that Xk ≥ 0
thanks to the following relation obtained using the definition of surrogate functions:

Xk =
∑
i∈Ik

{ak−1
i (θk−1)− fi,θk−1(θk−1)} =

∑
i∈Ik

{ak−1
i (θk−1)− fi(θk−1)} ≥ 0. (33)

We finally have to prove the convergence of the series
∑∞
k=0 E[|Ek|]. For this purpose, we will show

that for all i ∈ JNK:
∞∑
k=0

E
[
|âki (θk)− aki (θk)|

]
<∞ (34)

We have, using the Tower property of the conditional expectation and the Jensen inequality:

E
[
|âki (θk)− aki (θk)|

]
≤ E

[
Ei,θτi,k

[
sup
ϑ∈Θ
|âki (ϑ)− aki (ϑ)|

]]
(35)

Under assumption M 3 applied with the function ϑ→ âki (ϑ), for all i ∈ JNK we have:

Ei,θτi,k
[

sup
ϑ∈Θ
|âki (ϑ)− aki (ϑ)|

]
≤ Ci(ri,θτi,k )M−1/2

τi,k
(36)

where Ci(ri,θτi,k ) is a finite constant defined by (14) and τi,k is defined by (4). Thus, we have that:

E
[
|âki (θk)− aki (θk)|

]
≤ Ci(ri,θτi,k )E[M−1/2

τi,k
] (37)
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Since, any index i is included in a mini-batch with a probability equal to p
N conditionally indepen-

dently from the past, we obtain that:

E[M−1/2
τi,k

] =

k∑
j=1

(
1− p

N

)j−1 p

N
M
−1/2
k−j (38)

Taking the infinite sum of this term yields:
∞∑
k=1

E[M−1/2
τi,k

] =

∞∑
k=1

k∑
j=1

(
1− p

N

)j−1 p

N
M
−1/2
k−j

=

∞∑
k=1

∞∑
l=0

(
1− p

N

)k−(l+1) p

N
1{l≤k−1}M

−1/2
l

=
p

N

∞∑
l=0

(
1− p

N

)−(l+1)

M
−1/2
l

∞∑
k=l+1

(
1− p

N

)k
=

∞∑
l=0

M
−1/2
l

(39)

which proves identity (34), using assumption M 4. By summing over the indices i ∈ JNK, (34)
implies:

∞∑
k=0

E
[
|âk(θk)− āk(θk)|

]
<∞ (40)

Hence, we obtain that
∑∞
k=0 |âk(θk)− āk(θk)| <∞ almost surely which implies that:

lim
k→∞

âk(θk)− āk(θk) = 0 a.s. (41)

Similarly, using assumption M 3 applied for all i ∈ JNK, with the function ϑ→ ∇âki (ϑ) we obtain:

lim
k→∞

∇âk(θk)−∇āk(θk) = 0 a.s. (42)

It follows from (34) and (40) that
∑∞
k=0 E [|Ek|] <∞ and that the series

∑∞
k=0 εk converges to an

almost surely finite limit. Hence by Lemma 1 and (41) we get:

• the sequence
(
āk(θk)

)
k≥0

and the series
∑∞
k=0 χk converge a.s.

• the sequence
(
E [āk(θk)]

)
k≥0

and the series
∑∞
k=0 E [Xk] converge with lim

k→∞
E [āk(θk)] =

E[ lim
k→∞

āk(θk)].

• the sequence
(
âk(θk)

)
k≥0

converges a.s. and the sequence
(
E [âk(θk)]

)
k≥0

converges.

Now, we have to prove the almost-sure convergence of the sequence
(
f(θk)

)
k≥0

and the convergence
of
(
E [f(θk)]

)
k≥0

.

Let us denote for all θ ∈ Θ and a subset J ⊂ JNK:

fJ(θ) ,
∑
i∈J

fi(θ)

ak−1
J (θ) ,

∑
i∈J

ak−1
i (θ)

(43)

The Beppo-Levi theorem and the Tower property of the conditional expectation imply:

M , E

[ ∞∑
k=1

Xk

]
=

∞∑
k=0

E
[
ak−1
Ik

(θk−1)− fIk(θk−1)
]

=

∞∑
k=0

E
[
E
[
ak−1
Ik

(θk−1)− fIk(θk−1)
∣∣Fk−1

]] (44)
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with E
[
fIk(θk−1)

∣∣Fk−1

]
= p

N f(θk−1) and E
[
[ak−1
Ik

(θk−1)
∣∣Fk−1

]
= p

N

∑N
i=1 a

k−1
i (θk−1) =

p
N ā

k−1(θk−1) where Fk−1 = σ(Ij , j ≤ k − 1) is the filtration generated by the sampling of the
indices. We thus obtain:

M =
p

N

∞∑
k=0

E
[
āk−1(θk−1)− f(θk−1)

]
=

p

N
E

[ ∞∑
k=0

āk−1(θk−1)− f(θk−1)

]
<∞ (45)

which yields to:

E

[ ∞∑
k=1

Xk

]
=

p

N
E

[ ∞∑
k=1

{āk−1(θk−1)− f(θk−1)}

]
<∞ (46)

showing that:

lim
k→∞

E
[
āk(θk)− f(θk)

]
= 0

lim
k→∞

āk(θk)− f(θk) = 0 a.s.
(47)

showing that the sequence
(
E [f(θk)]

)
k≥0

converges and that
(
f(θk)

)
k≥0

converges a.s.

A.2.2 Proof of (ii)

Let us define, for all k ≥ 0, h̄k as:

h̄k : ϑ→
N∑
i=1

aki (ϑ)− fi(ϑ) (48)

h̄k is L-smooth with L =
∑N
i=1 Li since each of its component is Li-smooth by definition of the

surrogate functions. Using the particular parameter ϑk = θk − 1
L∇h̄k(θk) we have the following

classical inequality for smooth functions (cf. Lemma 1.2.3 in [Nesterov, 2007]):

0 ≤ h̄k(ϑk) ≤ h̄k(θk)− 1

2L
‖∇h̄k(θk)‖22

=⇒ ‖∇h̄k(θk)‖22 ≤ 2Lh̄k(θk)
(49)

Using (47), we conclude that lim
k→∞

‖∇h̄k(θk)‖2 = 0 a.s. Then, the decomposition of 〈∇f(θk), θ −
θk〉 for any θ ∈ Θ yields:

〈∇f(θk), θ − θk〉 = 〈∇āk(θk), θ − θk〉 − 〈∇h̄k(θk), θ − θk〉
= 〈∇āk(θk)−∇âk(θk), θ − θk〉+ 〈∇âk(θk), θ − θk〉 − 〈∇h̄k(θk), θ − θk〉

(50)

Note that θk is the result of the minimization of âk(θ) on the constrained set Θ, therefore for all
θ ∈ Θ, 〈∇âk(θk), θ − θk〉 ≥ 0. Thus, we obtain, using the Cauchy-Schwarz inequality:

〈∇f(θk), θ − θk〉 ≥ 〈∇āk(θk)−∇âk(θk), θ − θk〉 − 〈∇h̄k(θk), θ − θk〉
≥ −‖∇āk(θk)−∇âk(θk)‖2‖θ − θk‖2 − ‖∇h̄k(θk)‖2‖θ − θk‖2

(51)

By minimizing over Θ and taking the infimum limit, we get, using (42):

lim inf
k→∞

inf
θ∈Θ

〈∇f(θk), θ − θk〉
‖θ − θk‖2

≥ − lim
k→∞

(
‖∇āk(θk)−∇âk(θk)‖2 + ‖∇h̄k(θk)‖2

)
= 0 (52)

which is the Asymptotic Stationary Point Condition (ASPC).
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B Incremental MCEM for Curved Exponential Family

In the particular case where for all i ∈ JNK and zi ∈ Zi, the complete model θ → ci(zi, θ) belongs
to the curved exponential family, we assume that:
E 1. For all i ∈ JNK and θ ∈ Θ:

log ci(zi, θ) = Hi(zi)− ψi(θ) + 〈S̃i(zi), φi(θ)〉. (53)

where ψi : Θ 7→ R and φi : Θ 7→ R are twice continuously differentiable functions of θ,Hi : Zi 7→ R
is a twice continuously differentiable function of zi and S̃i : Zi 7→ Si is a statistic taking its values in
a convex subset Si of R and such that

∫
Zi
|S̃i(zi)|pi(zi, θ)µi(dzi) <∞.

Define, for all θ ∈ Θ and s = (si, 1 ≤ i ≤ N) ∈ S where S =×N

n=1
Si, the function L(s; θ) by:

L(s; θ) ,
N∑
i=1

ψi(θ)−
N∑
i=1

〈si, φi(θ)〉. (54)

E 2. There exist a function θ̂ : S 7→ Θ such that for all s ∈ S, :

L(s; θ̂(s)) ≤ L(s; θ). (55)

In many models of practical interest for all s ∈ S, θ 7→ L(s, θ) has a unique minimum. In the context
of the curved exponential family, the MISSO algorithm can be formulated as follows:

Algorithm 3 MISSO for a curved exponential family
Initialization: given an initial parameter estimate θ0, for all i ∈ JNK and m ∈
J0,M0 − 1K, sample a Monte Carlo batch {z0,m

i }M0−1
m=0 from pi(zi, θ

0) and compute
s0
i = 1

M0

∑M0

m=1 S̃i(z
0,m
i ).

Iteration k: given the current estimate θk−1:
1. Pick a set Ik uniformly on {A ⊂ JNK, card(A) = p}

2. For all i ∈ Ik and m ∈ J0,Mk − 1K, sample a Monte Carlo batch {zk,mi }Mk−1
m=0

from pi(zi, θ
k−1).

3. Compute ski such as:

ski =

{
1
Mk

∑Mk−1
m=1 S̃i(z

k,m
i ) if i ∈ Ik

sk−1
i otherwise

(56)

4. Set θk = θ̂(sk) where sk = (ski , 1 ≤ i ≤ N)

In the context of the logisitc regression described in section 3.1, the complete log likelihood is
expressed as:

log c(z, θ) ∝
N∑
i=1

ni∑
j=1

{yijd>ijzi − log(1 + ed
>
ijzi)}−

N∑
i=1

1

2
log(|Ω|) +

1

2
Tr
(
Ω−1(zi − β)(zi − β)>

)
and for all i ∈ JNK, the sufficient statistics are defined as S̃i(zi) , (zi, z

>
i zi). Then, it can easily be

shown that the maximization function is defined as follows:

θ̂ :S 7→ Θ (57)

(si,1, si,2)Ni=1 →

(
1

N

N∑
i=1

si,1,
1

N

N∑
i=1

si,2 − (
1

N

N∑
i=1

si,1)>
1

N

N∑
i=1

si,1

)
(58)
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