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Abstract

1This paper introduces a novel approach to embed flow-based models with hierarchical structures.
The proposed framework is named Variational Flow Graphical (VFG) Model. VFGs learn
the representation of high dimensional data via a message-passing scheme by integrating flow-
based functions through variational inference. By leveraging the expressive power of neural
networks, VFGs produce a representation of the data using a lower dimension, thus overcoming
the drawbacks of many flow-based models, usually requiring a high dimensional latent space
involving many trivial variables. Aggregation nodes are introduced in the VFG models to
integrate forward-backward hierarchical information via a message passing scheme. Maximizing
the evidence lower bound (ELBO) of data likelihood aligns the forward and backward messages
in each aggregation node achieving a consistency node state. Algorithms have been developed to
learn model parameters through gradient updating regarding the ELBO objective.

The consistency of aggregation nodes enable VFGs to be applicable in tractable inference on
graphical structures. Besides representation learning and numerical inference, VFGs provide a
new approach for distribution modeling on datasets with graphical latent structures. Additionally,
theoretical study shows that VFGs are universal approximators by leveraging the implicitly
invertible flow-based structures. With flexible graphical structures and superior excessive power,
VFGs could potentially be used to improve probabilistic inference.

In the experiments, VFGs achieves improved evidence lower bound (ELBO) and likelihood
values on multiple datasets. We also highlight the benefits of our VFG model on missing entry
imputation for datasets with graph structures. Multiple experiments on synthetic and real-world
datasets confirm the benefits of the proposed method and potentially broad applications.

1This work was initially submitted in 2020.
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1 Introduction
Learning tractable distribution or density functions from datasets has broad applications. Proba-
bilistic graphical models (PGMs) provide a unifying framework for capturing complex dependencies
among random variables (Bishop and Nasrabadi, 2006; Wainwright and Jordan, 2008; Koller and
Friedman, 2009). There are two general approaches for probabilistic inference with PGMs and
other models: exact inference and approximate inference. In most cases, exact inference is either
computationally involved or simply intractable. Variational inference (VI), stemmed from statistical
physics, is computationally efficient and is applied to tackle large-scale inference problems (Anderson
and Peterson, 1987; Hinton and van Camp, 1993; Jordan et al., 1999; Ghahramani and Beal, 1999;
Hoffman et al., 2013; Blei et al., 2017; Fang and Li, 2021). In variational inference, mean-field
approximation (Anderson and Peterson, 1987; Hinton and van Camp, 1993; Xing et al., 2003)
and variational message passing (Bishop et al., 2003; Winn and Bishop, 2005) are two common
approaches. These methods are limited by the choice of distributions that are inherently unable to
recover the true posterior, often leading to a loose approximation.

To tackle the probabilistic inference problem, alternative models have been developed under the
name of tractable probabilistic models (TPMs). They include probabilistic decision graphs (Jaeger
et al., 2006), arithmetic circuits (Darwiche, 2003), and-or search spaces (Marinescu and Dechter,
2005), multi-valued decision diagrams (Dechter and Mateescu, 2007), sum-product nets (Sánchez-
Cauce et al., 2021), probabilistic sentential decision diagrams (Kisa et al., 2014), and probabilistic
circuits (PCs) (Choi et al., 2020). PCs leverage the recursive mixture models and distributional
factorization to establish tractable probabilistic inference. PCs also aim to attain a TPM with
improved expressive power. The recent GFlowNets (Bengio et al., 2021) also target tractable
probabilistic inference on different structures.

Apart from probabilistic inference, generative models have been developed to model high dimen-
sional datasets and to learn meaningful hidden data representations by leveraging the approximation
power of neural networks. These models also provide a possible approach to generate new samples
from underlining distributions. Variational Auto-Encoders (VAEs) (Kingma and Welling, 2014)
and Generative Adversarial Networks (GAN) (Goodfellow et al., 2014; Arjovsky and Bottou, 2017;
Karras et al., 2019; Zhu et al., 2017; Yin et al., 2020; Ren et al., 2020) are widely applied to different
categories of datasets. Flow-based models (Dinh et al., 2017, 2015; Rezende and Mohamed, 2015;
van den Berg et al., 2018; Ren et al., 2021) leverage invertible neural networks and can estimate
the density values of data samples as well. Energy-based models (EBMs) (Zhu et al., 1998; LeCun
et al., 2006; Hinton, 2012; Xie et al., 2016; Nijkamp et al., 2019; Zhao et al., 2021; Zheng et al.,
2021) define an unnormalized probability density function of data, which is the exponential of the
negative energy function. Unlike TPMs, it is usually difficult to directly use generative models to
perform probabilistic inference on datasets.

In this paper, we introduce Variational Flow Graphical (VFG) models. By leveraging
the expressive power of neural networks, VFGs can learn latent representations from data. VFGs
also follow the stream of tractable neural networks that allow to perform inference on graphical
structures. Sum-product networks (Sánchez-Cauce et al., 2021) and probabilistic circuits (Choi
et al., 2020) are falling into this type of models as well. Sum-product networks and probabilistic
circuits depend on mixture models and probabilistic factorization in graphical structure for inference.
Whereas, VFGs rely on the consistency of aggregation nodes in graphical structures to achieve
tractable inference. Our contributions are summarized as follows.
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Summary of contributions. Dealing with high dimensional data using graph structures exacer-
bates the systemic inability for effective distribution modeling and efficient inference. To overcome
these limitations, we propose the VFG model to achieve the following goals:

• Hierarchical and flow-based: VFG is a novel graphical architecture uniting the hierarchical
latent structures and flow-based models. Our model outputs a tractable posterior distribution
used as an approximation of the true posterior of the hidden node states in the considered
graph structure.

• Distribution modeling: Our theoretical analysis shows that VFGs are universal approxi-
mators. In the experiments, VFGs can achieve improved evidence lower bound (ELBO) and
likelihood values by leveraging the implicitly invertible flow-based model structure.

• Numerical inference: Aggregation nodes are introduced in the model to integrate hierarchi-
cal information through a variational forward-backward message passing scheme. We highlight
the benefits of our VFG model on applications: the missing entry imputation problem and
the numerical inference on graphical data.

Moreover, experiments show that our model achieves to disentangle the factors of variation underlying
high dimensional input data.

Roadmap: Section 2 presents important concepts used in the paper. Section 3 introduces the
Variational Flow Graphical (VFG) model. The approximation property of VFGs is discussed in
Section 4. Section 5 provides the algorithms used to train VFG models. Section 6 discusses how to
perform inference with a VFG model. Section 7 showcases the advantages of VFG on various tasks.
Section 8 and Section 9 provide a discussion and conclusion of the paper.

2 Preliminaries

We introduce the general principles and notations of variational inference and flow-based models in
this section.

Notation: We use [L] to denote the set {1, · · · , L}, for all L > 1. KL(p||q) :=
∫
Z p(z) log(p(z)/q(z))dz

is the Kullback-Leibler divergence from q to p, two probability density functions defined on the set
Z ⊂ Rm for any dimension m > 0.

Variational Inference: Following the setting discussed above, the functional mapping f : Z −→ X
can be viewed as a decoding process and the mapping f−1: X −→ Z as an encoding one between
random variables z ∈ Z and x ∈ X with densities z ∼ p(z),x ∼ pθ(x|z). To learn the parameters θ,
VI employs a parameterized family of so-called variational distributions qφ(z|x) to approximate the
true posterior p(z|x) ∝ p(z)pθ(x|z). The optimization problem of VI can be shown to be equivalent
to maximizing the following evidence lower bound (ELBO) objective, noted L(x; θ, φ):

log p(x) > L(x; θ, φ) = Eqφ(z|x)
[
log pθ(x|z)

]
−KL(qφ(z|x)||p(z)) . (1)
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In Variational Auto-Encoders (VAEs, (Kingma and Welling, 2014; Rezende et al., 2014)), the
calculation of the reconstruction term requires sampling from the posterior distribution along with
using the reparameterization trick, i.e.,

Eqφ(z|x)
[
log pθ(x|z)

]
' 1
U

U∑
u=1

log p(x|zu). (2)

Here U is the number of latent variable samples drawn from the posterior qφ(z|x) regarding data x.

Flow-based Models: Flow-based models (Dinh et al., 2017, 2015; Rezende and Mohamed, 2015;
van den Berg et al., 2018) correspond to a probability distribution transformation using a sequence of
invertible and differentiable mappings, noted f : Z −→ X . By defining the aforementioned invertible
maps {f`}L`=1, and by the chain rule and inverse function theorem, the variable x = f(z) has a
tractable probability density function (pdf) given as:

log pθ(x) = log p(z) +
L∑
i=1

log
∣∣∣∣det( ∂hi

∂hi−1 )
∣∣∣∣ , (3)

where we have h0 = x and hL = z for conciseness. The scalar value log |det(∂hi/∂hi−1)| is the
logarithm of the absolute value of the determinant of the Jacobian matrix ∂hi/∂hi−1, also called
the log-determinant. Eq. (3) yields a simple mechanism to build families of distributions that, from
an initial density and a succession of invertible transformations, returns tractable density functions
that one can sample from. Rezende and Mohamed (2015) propose an approach to construct flexible
posteriors by transforming a simple base posterior with a sequence of flows. Firstly a stochastic
latent variable is draw from base posterior N (z0|µ(x), σ(x)). With K flows, latent variable z0 is
transformed to zk.The reformed EBLO is given by

L(x; θ, φ) = Eqφ
[
log pθ(x, z)− log qφ(z|x)

]
= Eq0

[
log pθ(x, z)− log q0(z0|x)

]
+ Eq0

[ K∑
k=1

log
∣∣ det(∂fk(zk;ψk)

∂zk
)
∣∣].

Here fk is the k-th flow with parameter ψk, i.e., zK = fK ◦ · · · f2 ◦ f1(z0). The flows are considered
as functions of data sample x, and they determine the final distribution in amortized inference.
Several recent models have been proposed by leveraging the invertible flow-based models. Graphical
normalizing flow (Wehenkel and Louppe, 2021) learns a DAG structure from the input data
under sparse penalty and maximum likelihood estimation. The bivariate causal discovery method
proposed in Khemakhem et al. (2021) relies on autoregressive structure of flow-based models and
the asymmetry of log-likelihood ratio for cause-effect pairs. In this paper, we propose a framework
that generalizes flow-based models (Dinh et al., 2017, 2015; Rezende and Mohamed, 2015; van den
Berg et al., 2018) to graphical variable inference.
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3 Variational Flow Graphical Model
Assume k sections in the data samples, i.e., x = [x(1), ...,x(k)], and a relationship among these
sections and the corresponding latent variable. Then, it is possible to define a graphical model
using normalizing flows, as introduced Section 2, leading to exact latent variable inference and
log-likelihood evaluation of data samples.

A VFG model G = {V, f} consists of a node set (V) and an edge set (f). An edge can be either a
flow function or an identity function. There are two types of nodes in a VFG: aggregation nodes and
non-aggregation nodes. A non-aggregation node connects with another node with a flow function or
an identity function. An aggregation node has multiple children, and it connects each of them with
an identity function. Figure 1-Left gives an illustration of an aggregation node and Figure 1-Right
shows a tree VFG model. Unlike classical graphical models, a node in a VFG model may represent
a single variable or multiple variables. Moreover, each latent variable belongs to only one node in a
VFG. In the following sections, identity function is considered as a special case of flow functions.

Figure 1: (Left) Node h2,1 connects its children with invertible functions. Messages from the children
are aggregated at the parent node, h2,1. (Right) An illustration of the latent structure from layer
l−1 to l+1. Thin lines are identity functions, and thick lines are flow functions. ⊕ is an aggregation
node, and circles stand for non-aggregation nodes.

3.1 Evidence Lower Bound of VFGs

We apply variational inference to learn model parameters θ from data samples. Different from VAEs,
the recognition model (encoder) and the generative model (decoder) in a VFG share the same neural
net structure and parameters. Moreover, the latent variables in a VFG lie in a hierarchy structure
and are generated with deterministic flow functions.

We start with a tree VFG (Figure 2) to introduce the ELBO of the model. The hierarchical
tree structure comprises L layers, hl denotes the latent state in layer l of the tree. We use h(j) to
represent node j’s latent state without specification of the layer number, and j is the node index in
a tree or graph. The joint distribution for the hierarchical model is then

pθ(x,h) = p(hL)p(hL−1|hL) · · · p(h1|h2)p(x|h1) .

where h = {h1, · · · ,hL} denotes the set of latent states of the model. The hierarchical generative
model is given by factorization p(x|hL) = p(x|h1)ΠL−1

l=1 p(hl|hl+1), and the prior distribution is
p(hL). Note that only the root nodes have prior distributions. The probabilistic density function
p(hl−1|hl) in the generative model is parameterized with one or multiple invertible flow functions.
By leveraging the invertible flow functions, we use variational inference to approximate the posterior
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Figure 2: Forward message from data to approximate posterior distributions; generative model is re-
alized by backward message from the root and generates the samples or reconstructions at each layer.

distribution of latent states. The hierarchical posterior (recognition model) is factorized as

qθ(h|x) = q(h1|x)q(h2|h1) · · · q(hL|hL−1). (4)

Evaluation of the posterior (recognition model) (4) involves forward information flows from the
bottom of the tree to the top, and similarly, sampling the generative model takes the reverse
direction.

By leveraging the hierarchical conditional independence in both generative model and posterior,
the ELBO regarding the model is

log pθ(x) > L(x; θ) = Eq(h1:L|x)
[
log p(x|h1:L)

]
−

L∑
l=1

KLl. (5)

Here KLl is the Kullback-Leibler divergence between the posterior and generative model in layer l.
The first term in (5) evaluates data reconstruction. When 1 6 l 6 L,

KLl = Eq(h1:L|x)
[
log q(hl|hl−1)− log p(hl|hl+1)

]
. (6)

When l = L, KLL = Eq(h1:L|x)
[
log q(hL|hL−1)− log p(hL)

]
. It is easy to extend the computation of

the ELBO (5) to DAGs with topology ordering of the nodes (and thus of the layers). Let ch(i) and
pa(i) denote node i’s child set and parent set, respectively. Then, the ELBO for a DAG structure
reads:

L(x; θ) =Eq(h|x)
[
log p(x|h)

]
−

∑
i∈V\RG

KL(i) −
∑
i∈RG

KL
(
q(h(i)|hch(i))||p(h(i))

)
. (7)

Here KL(i) = Eq(h|x)
[
log q(h(i)|hch(i)) − log p(h(i)|hpa(i))

]
. RG is the set of root nodes of DAG

G = {V, f}. Assuming there are k leaf nodes on a tree or a DAG model, corresponding to k sections
of the input sample x = [x(1), ...,x(k)].

Maximizing the ELBO (5) or (7) equals to optimizing the parameters of the flows, θ. Similar to
VAEs, we apply forward message passing (encoding) to approximate the posterior distribution of each
layer’s latent variables, and backward message passing (decoding) to generate the reconstructions as
shown in Figure 2. For the following sections, we use hi to represent node i’s state in the forward
message, and ĥi for node i’s state in the backward message. For all nodes, both hi and ĥi are
sampled from the posterior. At the rood nodes, we have ĥR = hR .
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3.2 Aggregation Nodes

There are two approaches to aggregate signals from different nodes: average-based and concatenation-
based. We rather focus on average-based aggregation in this paper, and Figure 3 gives an example
denoted by the operator ⊕. Let f(i,j) be the direct edge (function) from node i to node j, and f−1

(i,j)
or f(j,i) defined as its inverse function. Then, the aggregation operation at node i reads

h(i) = 1
|ch(i)|

∑
j∈ch(i)

f(j,i)(h(j)), ĥ(i) = 1
|pa(i)|

∑
j∈pa(i)

f(j,i)(ĥ(j)) . (8)

Note that the above two equations hold even when node i has only one child or parent.

Figure 3: Aggregation node on a DAG VFG.

With the identity function between the parent and its children, there are node consistency rules
regarding an average aggregation node: (a) a parent node’s backward state equals the mean of its
children’s forward states, i.e., ĥ(i) = 1

|ch(i)|
∑
j∈ch(i) h(j); (b) a child node’s forward state equals to

the average of its parents’ backward states, i.e., h(i) = 1
|pa(i)|

∑
j∈pa(i) ĥ(j). These rules empower

VFGs with implicit invertibility.
We use aggregation node i in the DAG presented in Figure 3 as an example to illustrate node

consistency. Node i has two parents, u and v; and two children, d and e. Node i connects its
parents and children with identity functions. According to (8), we have h(i) = (h(d) + h(e))/2 and
ĥ(i) = (ĥ(u) + ĥ(v))/2. Here aggregation consistency means, for i’s children, their forward state
should be consistent with i’s backward state, i.e.,

h(d) = h(e) = ĥ(i). (9)

For i’s parents, their backward state should be consistent with i’s forward state, i.e.,

ĥ(u) = ĥ(v) = h(i). (10)

We utilize the KL term in the ELBO (7) to ensure (9) and (10) can be satisfied during parameter
updating. The KL term regarding node i is

KL(i) =E
q(h,ĥ|x)

[
log q(h(i)|hch(i))− log p(h(i)|ĥpa(i))

]
(11)

' log q(h(i)|hch(i))− log p(h(i)|ĥpa(i)).
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As the term log q(h(i)|hch(i)) involves node states that are deterministic according to (8), it is
omitted in the computation of (11). With Laplace as the latent state distribution, here

log p(h(i)|ĥpa(i))

=1
2
(

log p(h(i)|ĥ(u)) + p(h(i)|ĥ(v))
)

=1
2
(
− ‖h(i) − ĥ(u)‖1 − ‖h(i) − ĥ(v)‖1 − 2m · log 2

)
.

Hence minimizing KL(i) is equal to minimizing {‖h(i) − ĥ(u)‖1 + ‖h(i) − ĥ(v)‖1} which achieves the
consistent objective in (10).

Similarly, KLs of i’s children intend to realize consistency given in (9). We use node d as an
example. The KL term regarding node d is

KL(d) =E
q(h,ĥ|x)

[
log q(h(d)|hch(d))− log p(h(d)|ĥpa(d))

]
' log q(h(d)|hch(d))− log p(h(d)|ĥpa(d)).

The first term log q(h(d)|hch(d)) is omitted in the calculation of KL(d) due to the deterministic
relation with (8). Knowing that

log p(h(d)|ĥpa(d)) = log p(h(d)|ĥ(i))
=− ‖h(d) − ĥ(i)‖1 −m · log 2,

we notice that minimizing KL(d) boils down to minimizing ‖h(d) − ĥ(i)‖1 that targets at (9). In
summary, by maximizing the ELBO of a VFG, the aggregation consistency can be attained along
with fitting the model to the data.

3.3 Implementation Details

The calculation of the data reconstruction term in (7) requires node states hi and ĥi (∀i ∈ V) from
the posterior. They correspond to the encoding and decoding procedures in VAE model as shown
in Eq. (2). At the root node, we have ĥR = hR. The reconstruction terms in ELBO (7) can be
computed with the backward message in the generative model p(x|ĥ1), i.e.,

E
q(h,ĥ|x)

[
log p(x|h, ĥ)

]
' 1
U

U∑
u=1

log p(x|ĥ1:L
u ) = 1

U

U∑
u=1

log p(x|ĥpa(x)
u ).

For a VFG model, we set U = 1. In the last term, p(x|ĥpa(x)) is either Gaussian or binary distribution
parameterized with x̂ generated via the flow function with ĥpa(x) as the input.

4 Universal Approximation Property
A universal approximation power of coupling-layer based flows has been highlighted in Teshima et al.
(2020). Following the analysis for flows Teshima et al. (2020), we prove that coupling-layer based
VFGs have universal approximation as well. We first give several additional definitions regarding
universal approximation. For a measurable mapping f : Rm → Rn and a subset K ⊂ Rm, we define
the following,

||f ||p,K =
(∫

K
||f(x)||pdx

)1/p
.

Here || · || is the Euclidean norm of Rn and ||f ||sup,K := supx∈K ||f(x)||.
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Definition 4.1. (Lp-/sup-universality) LetM be a model which is a set of measurable mappings
from Rm to Rn. Let p ∈ [1,∞), and let G be a set of measurable mappings g : Ug → Rn, where
Ug is a measurable subset of Rm which may depend on g. We say that M has the Lp-universal
approximation property for G if for any g ∈ G, any ε > 0, and any compact subset K ∈ Ug, there
exists f ∈ M such that ||f − g||p,K < ε. We define the sup-universality analogously by replacing
|| · ||p,K || with || · ||p,K ||sup,K .

Definition 4.2. (Immersion and submanifold) g : M→ N is said to be an immersion if rank(g)=
m =dim(M) everywhere. If g is injective (one-to-one) immersion, then g establish an one-to-one
correspondence of M and the subset M̃ = g(M) of N. If we use this correspondence to endow M̃
with a topology and C∞ structure, then M̃ will be called a submanifold (or immersed submanifold)
and g : M→ M̃ is a diffeomorphism.

Definition 4.3. (Cr-diffeomorphisms for submanifold: Qr). We define Qr as the set of all Cr-
diffeomorphisms g : Ug → U, where Ug ⊂ Rm is an open set Cr-diffeomorphic to U, which may
depend on g, and U is a submanifold of Rn.

We use m to represent the root node dimension of a VFG, and n to denote the dimension of
data samples. VFGs learn the data manifold embedded in Rn. We define C∞c (Rm−1) as the set of
all compactly-supported C∞ mappings from Rm−1 to R. For a function set T , we define T -ACF as
the set of affine coupling flows Teshima et al. (2020) that are assembled with functions in T , and
we use VFGT −ACF to represent the set of VFGs constructed using flows in T -ACF.

Theorem 4.1. (Lp-universality) Let p ∈ [0,∞) . Assume H is a sup-universal approximator for
C∞c (Rm−1), and that it consists of C1-functions. Then VFGH−ACF is an Lp-universal approxima-
tor for Q0

c .

Proof. We construct a VFG structure that forms a mapping from Rm to Rn. Let r = n mod m.
If r = 0, it is easy to construct a one-layer tree VFG f (f also represents the function/edge set)

and the root as an aggregation node. The children divide the n input entries into τ = n/m even
sections, and each section connects the aggregation node with a flow function.

Given an injective immersion g : M→ N, function g can be represented with the concatenation
of a set of functions, i.e., g = [g1, ...,gτ ]>, each invertible gi has dimension m. According to the
function decomposition theory Kuo et al. (2010), its inverse can be represent as the summation of
functions g−1

i , 1 ≤ i ≤ τ , i.e., g−1 = 1
τ

∑τ
i=1 g−1

i . For each gi, and M̃i = gi(M) is a submanifold in
N, and it is diffeomorphic to M. According to Theorem 2 in Teshima et al. (2020), H−ACF is an
universal approximater for each gi, 1 ≤ i ≤ τ . Therefore, VFG f has universal approximation for
immersion g : M→ N.

If r 6= 0, let τ = bn/mc. We divide the τ -th section and the remaining r entries into two equal
small sections that are denoted with τ and τ + 1. Sections τ and τ + 1 have r overlapped entries.
Similarly, we can construct an one-layer VFG f with τ + 1 children, and each child takes a section
as the input.

The input coordinate index of gτ in Rm is Iτ =
[
1, 2, ..., d(m+ r)/2e

]
, and the output index of

gτ in Rn is Iτ + γ =
[
γ + 1, γ + 2, ..., γ + d(m+ r)/2e

]
, and γ = (τ − 1)m. The input coordinate

index of gτ+1 in Rm is Iτ+1 =
[
m− d(m+ r)/2e+ 1, ...,m− 1,m

]
, and the output index of gτ+1 in

Rn is Iτ+1 + γ. We can see that the m dimensions are divided into two sets, the overlapped set
O =

[
m− d(m+ r)/2e+ 1, d(m+ r)/2e

]
, and the remaining set R containing the rest dimensions.

The mapping g : M→ N can be decomposed into τ + 1 functions, i.e., g = [g1, ...,gτ ,gτ+1]>,
and the inverse g−1 is adjusted here: g−1

j = 1
ω

∑ω
i=1 g−1

i(j). When j ∈ O, ω = τ + 1, and all g−1
i s will
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be involved; when j ∈ R, ω = τ , and either g−1
τ or g−1

τ+1 is omitted due to the missing of entry j
in the function output. The mapping gτ is a diffeomorphism from manifold Mτ ( Mτ ⊂ M) to
sub-manifold M̃τ in N. Similarly gτ+1 is a diffeomorphism from Mτ+1 to manifold M̃τ+1. For each
gi, 1 ≤ i ≤ τ + 1, it can be universally approximated with a function in H−ACF Teshima et al.
(2020). Hence, we construct a VFG with universal approximation for any g in Q0

c .

With the conditions in Theorem 4.1, VFGH−ACF is a distributional universal approximator as
well (Teshima et al., 2020).

5 The Proposed Algorithms
In this section, we develop the training algorithm (Algorithm 1) to maximize the ELBO objective
function (7). In Algorithm 1, the inference of the latent states is performed via forwarding message
passing, cf. Line 6, and their reconstructions are computed in backward message passing, cf. Line 11.
A VFG is a deterministic network passing latent variable values between nodes. Ignoring explicit
neural network parameterized variances for all latent nodes enables us to use flow-based models as
both the encoders and decoders. Hence, we obtain a deterministic ELBO objective (5)- (7) that can
efficiently be optimized with standard stochastic optimizers.

Algorithm 1 Inference model parameters with forward and backward message propagation
1: Input: Data distribution D, G = {V, f}
2: for s = 0, 1, ... do
3: Sample minibatch b samples {x1, ...,xb} from D;
4: for i ∈ V do
5: // forward message passing
6: h(i) = 1

|ch(i)|
∑
j∈ch(i) f(j,i)(h(j));

7: end for
8: ĥ(i) = h(i) if i ∈ RG or i ∈ layer L;
9: for i ∈ V do

10: // backward message passing
11: ĥ(i) = 1

|pa(i)|
∑
j∈pa(i) f−1

(i,j)(ĥ
(j));

12: end for
13: h = {h(t)∣∣t ∈ V}, ĥ = {ĥ(t)∣∣t ∈ V};
14: Approximate the KL terms in ELBO for each layer with b samples;
15: Updating VFG model G with gradient ascending: θ(s+1)

f = θ
(s)
f +∇θf

1
b

∑b
i=1 L(xb; θ

(s)
f ) .

16: end for

In training Algorithm 1, the backward variable state ĥl in layer l is generated according to
p(ĥl|ĥl+1), and at the root layer, node state ĥR is set equal to hR that is from the posterior q(h|x),
not from the prior p(hR). So we can see all the forward and backward latent variables are sampled
from the posterior q(h|x).

10



From a practical perspective, layer-wise training strategy can improve the accuracy of a model
especially when it is constructed of more than two layers. In such a case, the parameters of only one
layer are updated with backpropagation of the gradient of the loss function while keeping the other
layers fixed at each optimization step. By maximizing the ELBO (7) with the above algorithm, the
node consistency rules in Section 3.2 are expected to be satisfied.

5.1 Improve Training of VFG

The inference ability of VFG can be reinforced by masking out some sections of the training samples.
The training objective can be changed to force the model to impute the value of the masked sections.
For example in a tree model, the alternative objective function reads

L(x, Ox; θ) =
∑

t:16t6k,t/∈O
E
q(h,ĥ|xOx )

[
log p(x(t)|ĥ1)

]
(12)

−
L−1∑
l=1

E
q(h,ĥ|x)

[
log q(hl|hl−1)− log p(hl|ĥl+1)

]
−KL

(
q(hL|hL−1)|p(hL)

)
.

where Ox is the index set of leaf nodes with observation, and xOx is the union of observed data
sections. The random-masking training procedure for objective (12) is described in Algorithm 2.
In practice, we use Algorithm 2 along with Algorithm 1 to enhance the training of a VFG model.
However, we only occasionally update the model parameter θ with the gradient of (12) to ensure
the distribution learning running well.

Algorithm 2 Inference model parameters with random masking
1: Input: Data distribution D, G = {V, f}
2: for s = 0, 1, ... do
3: Sample minibatch b samples {x1, ...,xb} from D;
4: Optimize (5) with Line 4 to Line 15 in Algorithm 1;
5: Sample a subset of the k data sections as data observation set Ox; O ← Ox;
6: for i ∈ V do
7: // forward message passing
8: h(i) = 1

|ch(i)∩O|
∑
j∈ch(i)∩O f(j,i)(h(j));

9: O ← O ∪ {i} if ch(i) ∩O 6= ∅;
10: end for
11: ĥ(i) = h(i) if i ∈ RG or i ∈ layer L;
12: for i ∈ V do
13: // backward message passing
14: ĥ(i) = 1

|pa(i)|
∑
j∈pa(i) f−1

(i,j)(ĥ
(j));

15: end for
16: h = {h(t)∣∣t ∈ V ∩O}, ĥ = {ĥ(t)∣∣t ∈ V};
17: Approximate the KL terms in ELBO for each layer with b samples;
18: Updating VFG with gradient of (12): θ(s+1)

f = θ
(s)
f +∇θf

1
b

∑b
i=1 L(xb, Ox; θ(s)

f ) ,
19: end for

11



Figure 4: (Left) Inference on a VFG with single aggregation node. Node 7 aggregates information
from node 1 and 2, and passes down the update to node 3 for prediction. (Right) Inference on a
tree VFG. Observed node states are gathered at node 7 to predict the state of node 4. Red and
green lines are forward and backward messages, respectively.

6 Inference on VFGs
With a VFG, we aim to infer node states given observed ones. The hidden state of a parent node j
in l = 1 can be computed with the observed children as follows:

h(j) = 1
|ch(j) ∩O|

∑
i∈ch(j)∩O

h(i) , (13)

where O is the set of observed leaf nodes, see Figure 4-left for an illustration. Observe that for
either a tree or a DAG, the state of any hidden node is updated via messages received from its
children. After reaching the root node, we can update any nodes with backward message passing.
Figure 4 illustrates this inference mechanism for trees in which the structure enables us to perform
message passing among the nodes. We derive the following lemma establishing the relation between
two leaf nodes.

Lemma 6.1. Let G be a tree VFG with L layers, and i and j are two leaf nodes with a as the closest
common ancestor node. Given observed value at node i, the value of node j can be approximated by
x̂j = f(a,j)(f(i,a)(x(i))). Here f(i,a) is the flow function path from node i to node a.

Proof. According to the aggregation operation (8) discussed in Section 3.2, at an aggregation
node a, the reconstruction state of a child node j is the mean reconstruction state averaging the
backward messages from the parent nodes. The reconstruction of the child node j can be calculated
with the average reconstruction state regarding its parent node. Apply it sequentially, we have
x̂(j) = f(a,j)(ĥa)). The forward state of node a can be computed by sequentially applying forward
aggregating starting from its observed descendent i, i.e., h(a) = f(i,a)(x(i)). As there are no other
observations, with forward and backward message passing to and from the root node, at node a, we
have h(a) = ĥ(a). Therefore, we have x̂(j) = f(a,j)(f(i,a)(x(i))).

12



Considering the flow-based model (3), we have the following identity for each node of the graph
structure:

p(h(i)|hpa(i)) = p(hpa(i))
∣∣ det(∂hpa(i)

∂h(i) )
∣∣

= p(hpa(i))
∣∣ det(Jhpa(i)(h(i)))

∣∣ .
Lemma 6.1 provides an approach to conduct inference on a tree and impute missing values in the
data. It is easy to extend the inference method to DAG VFGs.

7 Numerical Experiments
In this section, we provide several studies to validate the proposed VFG models. The first application
we present is missing value imputation. We compare our method with different baseline models
on several datasets. The second set of experiments is to evaluate VFG models on three different
datasets, i.e., MNIST, Caltech101, and Omniglot, with ELBO and likelihoods as the score. The
third application we present here is the task of learning posterior distribution of the latent variables
corresponding to the hidden explanatory factors of variations in the data (Bengio et al., 2013).
For that latter application, the model is trained and evaluated on the MNIST handwritten digits
dataset.

In this paper, we would rather assume the VFG graph structures are given and fixed. In the
following experiments, the VFG structures are given in the dataset or designed heuristically (as
other neural networks) for the sake of numerical illustrations. Learning the structure of VFG is
an interesting research problem and is left for future works. A simple approach for VFG structure
learning is to regularize the graph with the DAG structure penalty (Zheng et al., 2018; Wehenkel
and Louppe, 2021).

All the experiments are conducted on NVIDIA-TITAN X (Pascal) GPUs. In the experiments, we
use the same coupling block (Dinh et al., 2017) to construct different flow functions. The coupling
block consists of three fully connected layers (of dimension 64) separated by two RELU layers along
with the coupling trick. Each flow function has block number B > 3.

7.1 Evaluation on Inference with Missing Entries Imputation

We now focus on the task of imputing missing entries in a graph structure. For all the following
experiments, the models are trained on the training set and are used to infer the missing entries of
samples in the testing set. We first study the proposed VFGs on two datasets without given graph
structures, and we compare VFGs with several conventional methods that do not require the graph
structures in the data. We then compare VFGs with graphical models that can perform inference
on explicit graphs.

7.1.1 Synthetic Dataset

In this set of experiments, we study different methods with synthetic datasets. The baselines for this
set of experiments include mean value method (Means), iterative imputation (Iterative) (Buck, 1960),
and multivariate imputation by chained equation (MICE) (Van Buuren and Groothuis-Oudshoorn,
2011). Mean Squared Error as the metric of reference in order to compare the different methods
for the imputation task. We use the baseline implementations in Pedregosa et al. (2011) in the
experiments.
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We generate 10 synthetic datasets (using different seeds) of 1, 300 data points, 1, 000 for the
training phase of the model, 300 for imputation testing. Each data sample has 8 dimensions with 2
latent variables. Let z1 ∼ N (0, 1.02) and z2 ∼ N (1.0, 2.02) be the latent variables. For a sample
x, we have x1 = x2 = z1, x3 = x4 = 2sin(z1), x5 = x6 = z2, and x7 = x8 = z2

2 . In the testing
dataset, x3, x4, x7, and x8 are missing. We use a VFG model with a single average aggregation
node that has four children, and each child connects the parent with a flow function consisting of
3 coupling layers (Dinh et al., 2017). Each child takes 2 variables as input data section, and the
latent dimension of the VFG is 2. We compare, in Figure 5, our VFG method with the baselines
described above using boxplots on obtained MSE values for those 10 simulated datasets. We can
see that the proposed VFG model performs much better than mean value, iterative, and MICE
methods. Figure 5 shows that VFGs also demonstrates more performance robustness compared
against other methods.

Means MICE Iterative VFG

0

5

10

15

Figure 5: Synthetic datasets: MSE boxplots of VFG and baseline methods.

7.1.2 California Housing Dataset

We further investigate the method on a real dataset. The California Housing dataset has 8 feature
entries and 20, 640 data samples. We use the first 20, 000 samples for training and 100 of the rest for
testing. We get 4 data sections, and each section contains 2 variables. In the testing set, the second
section is assumed missing for illustration purposes, as the goal is to impute this missing section. In
addition to the three baselines in introduced the main file, we also compared with KNN (k-nearest
neighbor) method. Again, we use the implementations from Pedregosa et al. (2011) for the baselines
in this set of experiments.

The VFG structure is designed heuristically. We construct a tree structure VFG with 2 layers.
The first layer has two aggregation nodes, and each of them has two children. The second layer
consists of one aggregation node that has two children connecting with the first layer. Each flow
function has B = 4 coupling blocks. Table 1 shows that our model yields significantly better results
than any other method in terms of prediction error. It indicates that with the help of universal
approximation power of neural networks, VFGs have superior inference capability.

Table 1: California Housing dataset: Imputation Mean Squared Error (MSE) results.

Methods Imputation MSE
Mean Value 1.993
MICE 1.951
Iterative Imputation 1.966
KNN (k=5) 1.969
VFG 1.356
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7.1.3 Comparison with Graphical Models

In this set of experiments, we use a synthetic Gaussian graphical model dataset from the bnlearn
package (Scutari, 2009) to evaluate the proposed model. The data graph structure is given. The
dataset consists of 7 variables and 5,000 samples. Sample values at each node are generated according
to a structured causal model with a diagram given by Figure 6.

Figure 6: Graph structure for Gaussian graphical model dataset.

In Figure 6, each node represents a variable generated with a function of its parent nodes. For
instance, node V is generated with V = f(pa(V ), NV ). Here pa(V ) is the set of V ’s parents, and
NV is a noise term for V . A node without any parent is determined only by the noise term. f() is
V ’s generating function, and only linear functions are used in this dataset. All the noise terms are
Normal distributions.

We take Bayesian network implementation (Scutari, 2009) and sum-product network (SPN)
package (Molina et al., 2019; Poon and Domingos, 2011) as experimental baselines. 4 500 samples
are used for training, and the rest 500 samples are for testing. The structure of VFG is designed
based on the directed graph given by Figure 6. In the imputation task, we take Node ‘F’ as the
missing entry, and use the values of other node to impute the missing entry. Table 2 gives the
imputation results from the three methods. We can see that VFG achieves the smallest prediction
error. Besides the imputation MSE, Table 2 also gives the prediction error variance. Compared
against Bayesian net and SPN, VFG achieves much smaller performance variance. It means VFGs
are much more stable in this set of experiments.

Table 2: Gaussian graphical model dataset: Imputation Mean Squared Error (MSE) and Variance
results.

Methods Bayesian Net SPN VFG
Imputation MSE 1.059 0.402 0.104
Imputation Variance 2.171 0.401 0.012
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7.2 ELBO and Likelihood

We further qualitatively compare our VFG model with existing methods on data distribution
learning and variational inference using three standard datasets. The baselines we compare in
this experiment are VAE (Kingma and Welling, 2014), Planer (Rezende and Mohamed, 2015),
IAF (Kingma et al., 2016), and SNF (van den Berg et al., 2018). The evaluation datasets and setup
are following two standard flow-based variational models, Sylvester Normalizing Flows (van den
Berg et al., 2018) and (Rezende and Mohamed, 2015). We use a tree VFG with structure as shown
in Figure 7 for three datasets.

Figure 7: MIST Tree structure.

We train the tree VFG with the following ELBO objective that incorporate a β coefficient for
the KL terms. Empirically, a small β yields better ELBO and NLL values, and we set β around 0.1
in the experiments. Recall that

ELBO = L(x; θ) = Eq(h1:L|x)
[
log p(x|h1:L)

]
− β

L∑
l=1

KLl.

Table 3 presents the negative evidence lower bound (-ELBO) and the estimated negative
likelihood (NLL) for all methods on three datasets: MNIST, Caltech101, and Omniglot. The
baseline methods are VAE based methods enhanced with normalizing flows. They use 16 flows to
improve the posterior estimation. SNF is orthogonal Sylvester flow method with a bottleneck of M
= 32. We set the VFG coupling block (Dinh et al., 2017) number with B = 4, and following (van den
Berg et al., 2018) we run multiple times to get the mean and standard derivation as well. VFG can
achieve superior EBLO as well as NLL values on all three datasets compared against the baselines
as given in Table 3. VFGs can achieve better variational inference and data distribution modeling
results (ELBOs and NLLs) in Table 3 in part due to VFGs’ universal approximation power as given

Table 3: Numerical values of negative log-likelihood and free energy (negative evidence lower bound)
for static MNIST, Caltech101, and Omniglot datasets.

Model MNIST Caltech101 Omniglot
-ELBO NLL -ELBO NLL -ELBO NLL

VAE (Kingma and Welling, 2014) 86.55 ± 0.06 82.14 ± 0.07 110.80 ± 0.46 99.62 ± 0.74 104.28 ± 0.39 97.25 ± 0.23
Planer (Rezende and Mohamed, 2015) 86.06 ± 0.31 81.91 ± 0.22 109.66 ± 0.42 98.53 ± 0.68 102.65 ± 0.42 96.04 ± 0.28
IAF (Kingma et al., 2016) 84.20 ± 0.17 80.79 ± 0.12 111.58 ± 0.38 99.92 ± 0.30 102.41 ± 0.04 96.08 ± 0.16
SNF (van den Berg et al., 2018) 83.32 ± 0.06 80.22 ± 0.03 104.62 ± 0.29 93.82 ± 0.62 99.00 ± 0.04 93.77 ± 0.03
VFG (ours) 80.80 ± 0.76 63.66 ± 0.14 67.26 ± 0.53 65.74 ± 0.84 80.16 ± 0.73 78.65 ± 0.66
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in Theorem 4.1. Also, the intrinsic approximate invertible property of VFGs ensures the decoder
or generative model in a VFG to achieve smaller reconstruction errors for data samples and hence
smaller NLL values.

7.3 Latent Representation Learning on MNIST

In this set of experiments, we evaluate VFGs on latent representation learning of the MNIST
dataset (LeCun et al.). We construct a tree VFG model depicted in Figure 7. In the first layer,
there are 4 flow functions, and each of them takes 14× 14 image blocks as the input. Thus a 28× 28
input image is divided into four 14× 14 blocks as the input of VFG model. We use B = 4 for all the
flows. The latent dimension for this model is m = 196. Following Sorrenson et al. (2020), the VFG
model is trained with image labels to learn the latent representation of the input data. We set the
parameters of hL’s prior distribution as a function of image label, i.e., λL(u), where u denotes the
image label. In practice, we use 10 trainable λLs regarding the 10 digits. The images in the second

Figure 8: (Top) original MNIST digits. (Bottom) reconstructed images using VFG.

row of Figure 8 are reconstructions of MNIST samples extracted from the testing set, displayed in
the first row of the same Figure, using our proposed VFG model.

Figure 9-Left shows t-distributed stochastic neighbor embedding (t-SNE) (van der Maaten
and Hinton, 2008) plot of 2, 000 testing images’ latent variables learned with our model, and 200
for each digit. Figure 9-Left illustrates that VFG can learn separated latent representations to
distinguish different hand-written numbers. For comparison, we also present the results of a baseline
model. The baseline model (coupling-based flow) is constructed using the same coupling block
and similar number of parameters as VFGs but with 28 × 28 as the input and latent dimension.
Figure 9-Right gives the baseline coupling-layer-based flow training and testing with the same
procedures. These show that coupling-based flow cannot give a clear division between some digits,
e.g., 1 and 2, 7 and 9 due to the bias introduced by the high-dimensional redundant latent variables.
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Figure 9: t-SNE of latent variables for VFG (Left) and coupling-layer based flow (Right) on MNIST.
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To provide a description of the learned latent representation, we first obtain the root latent
variables of a set of images through forward message passing. Each latent variable’s values are
changed increasingly within a range centered at the value of the latent variable obtained from last
step. This perturbation is performed for each image in the set. Figure 10 shows the change of
images by increasing one latent variable from a small value to a larger one. The figure presents
some of the latent variables that have obvious effects on images, and most of the m = 196 variables
do not impact the generation significantly. Latent variables i = 6 and i = 60 control the digit width.
Variable i = 19 affects the brightness. i = 92, i = 157 and some of the variables not displayed here
control the style of the generated digits.

Figure 10: MNIST: Increasing each latent variable from a small value to a larger one.
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8 Discussion
One of the motivations for proposing our VFG algorithm is to develop a tractable model that can be
used for distribution learning and posterior inference. As long as the node states in the aggregation
nodes are consistent, we can always apply VFGs in order to infer missing values. We provide more
discussion on the structures of VFGs in the sequel.

8.1 Benefits of Encoder-decoder Parameter Sharing

There are several advantages for the encoder and decoder to share parameters. Firstly, it makes
the network’s structure simple. Secondly, the training and inference can be simplified with concise
and simple graph structures. Thirdly, by leveraging invertible flow-based functions, VFGs obtain
tighter ELBOs in comparison with VAE based models.The intrinsic invertibility introduced by flow
functions ensures the decoder or generative model in a VFG achieves smaller reconstruction errors
for data samples and hence smaller NLL values and tighter ELBO. Whereas without the intrinsic
constraint of invertibility or any help or regularization from the encoder, VAE-based models have
to learn an unassisted mapping function (decoder) to reconstruct all data samples with the latent
variables, and there are always some discrepancy errors in the reconstruction that lead to relatively
larger NLL values and hence inferior ELBOs.

8.2 Structures of VFGs

In the experiments, the model structures have been chosen heuristically and for the sake of numerical
illustrations. A tree VFG model can be taken as a dimension reduction model that is available
for missing value imputation as well. Variants of those structures will lead to different numerical
results and at this point, we can not claim any generalization regarding the impact of the VFG
structure on the outputs. Meanwhile, learning the structure of VFG is an interesting research
problem and is left for future works. VFG structures could be learned through the regularization of
DAG structures (Zheng et al., 2018; Wehenkel and Louppe, 2021).

VFGs rely on minimizing the KL term to achieve consistency in aggregation nodes. As long as
the aggregation nodes retain consistency, the model always has a tight ELBO and can be applied to
tractable posterior inference. According to Teshima et al. (2020), coupling-based flows are endowed
with the universal approximation power. Hence, we believe that the consistency of aggregation
nodes on a VFG can be attained with a tight ELBO.

9 Conclusion
In this paper, we propose VFG, a variational flow graphical model that aims at bridging the gap
between flow-based models and the paradigm of graphical models. Our VFG model learns data
distribution and latent representation through message passing between nodes in the model structure.
We leverage the power of invertible flow functions in any general graph structure to simplify the
inference step of the latent nodes given some input observations. We illustrate the effectiveness
of our variational model through experiments. Future work includes applying our VFG model to
relational data structure learning and reasoning.
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Appendix
A ELBO of Tree VFGs

Figure 11: (Left) A tree VFG with L = 5 and three aggregation nodes. (Right) A DAG with inverse
topology order

{
{1,2,3}, {4,5}, {6}, {7}

}
, and they correspond to layers 0 to 3.

Let each data sample has k sections, i.e., x = [x(1), ...,x(k)]. VFGs are graphical models that
can integrate different sections or components of the dataset. We assume that for each pair of
connected nodes, the edge is an invertible flow function. The vector of parameters for all the edges
is denoted by θ. The forward message passing starts from x and ends at hL, and backward message
passing in the reverse direction. We start with the hierarchical generative tree network structure
illustrated by an example in Figure 11-Left. Then the marginal likelihood term of the data reads

p(x|θ) =
∑

h1,...,hL
p(hL|θ)p(hL−1|hL, θ) · · · p(x|h1, θ) .

The hierarchical generative model is given by factorization

p(h) = p(hL)ΠL−1
l=1 p(h

l|hl+1). (14)

The probability density function p(hl−1|hl) in the generative model is modeled with one or multiple
invertible normalizing flow functions. The hierarchical posterior (recognition network) is factorized
as

qθ(h|x) = q(h1|x)q(h2|h1) · · · q(hL|hL−1). (15)

Draw samples from the generative model (14) involves sequential conditional sampling from the top
of the tree to the bottom, and computation of the recognition model (15) takes the reverse direction.
Notice that

q(h|x) = q(h1|x)q(h2:L|h1) .

With the hierarchical structure of a tree, we further have

q(hl:L|hl−1) = q(hl|hl−1)q(hl+1:L|hlhl−1) = q(hl|hl−1)q(hl+1:L|hl) (16)
p(hl:L) = p(hl|hl+1:L)p(hl+1:L) = p(hl|hl+1)p(hl+1:L) (17)
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By leveraging the conditional independence in the chain structures of both recognition and generative
models, the derivation of trees’ ELBO becomes easier.

log p(x) = log
∫
p(x|h)p(h)dh

= log
∫
q(h|x)
q(h|x)p(x|h)p(h)dh

> Eq(h|x)
[
log p(x|h)− log q(h|x) + log p(h)

]
= L(x; θ).

The last step is due to the Jensen inequality. With h = h1:L,

log p(x) > L(x; θ)
=Eq(h1:L|x)

[
log p(x|h1:L)− log q(h1:L|x) + log p(h1:L)

]
= Eq(h1:L|x)

[
log p(x|h1:L)

]︸ ︷︷ ︸
Reconstruction of data

−Eq(h1:L|x)
[
log q(h1:L|x)− log p(h1:L)

]︸ ︷︷ ︸
KL1:L

(18)

With conditional independence in the hierarchical structure, we have

q(h1:L|x) = q(h2:L|h1x)q(h1|x) = q(h2:L|h1)q(h1|x).

The second term of (18) can be further expanded as

KL1:L =Eq(h1:L|x)
[
log q(h1|x) + log q(h2:L|h1)

− log p(h1|h2:L)− log p(h2:L)
]
. (19)

Similarly, with conditional independence of the hierarchical latent variables, p(h1|h2:L) = p(h1|h2).
Thus

KL1:L =Eq(h1:L|x)
[
log q(h1|x)− log p(h1|h2)

+ log q(h2:L|h1)− log p(h2:L)
]

=Eq(h1:L|x)
[
log q(h1|x)− log p(h1|h2)

]︸ ︷︷ ︸
KL1

+ Eq(h1:L|x)
[
log q(h2:L|h1)− log p(h2:L)

]︸ ︷︷ ︸
KL2:L

.

We can further expand the KL2:L term following similar conditional independent rules regarding
the tree structure. At level l, we get

KLl:L = Eq(h1:L|x)
[
log q(hl:L|hl−1)− log p(hl:L)

]
.

With (16) and (17), it is easy to show that

KLl:L =Eq(h1:L|x)
[
log q(hl|hl−1)− log p(hl|hl+1)

]︸ ︷︷ ︸
KLl

+ Eq(hl:L|x)
[
log q(hl+1:L|hl)− log p(hl+1:L)

]︸ ︷︷ ︸
KLl+1:L

. (20)
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The ELBO (18) can be written as

L(x; θ) = Eq(h1:L|x)
[
log p(x|h1:L)

]
−
L−1∑
l=1

KLl −KLL. (21)

When 1 6 l 6 L− 1

KLl = Eq(h1:L|x)
[
log q(hl|hl−1)− log p(hl|hl+1)

]
. (22)

According to conditional independence, the expectation regarding variational distribution layer l
just depends on layer l − 1. We can simplify the expectation each term of (21) with the default
assumption that all latent variables are generated regarding data sample x. Therefore the ELBO (21)
can be simplified as

L(x; θ) = Eq(h1|x)
[
log p(x|ĥ1)

]
−

L∑
l=1

KLl. (23)

The KL term (22) becomes

KLl = Eq(hl|hl−1)
[
log q(hl|hl−1)− log p(hl|ĥl+1)

]
.

When l = L,
KLL = Eq(hL|hL−1)

[
log q(hL|hL−1)− log p(hL)

]
.

B ELBO of DAG VFGs
Note that if we reverse the edge directions in a DAG, the resulting graph is still a DAG graph. The
nodes can be listed in a topological order regarding the DAG structure as shown in Figure 11-Right.

By taking the topology order as the layers in tree structures, we can derive the ELBO for DAG
structures. Assume the DAG structure has L layers, and the root nodes are in layer L. We denote
by h the vector of latent variables, then following (18) we develop the ELBO as

log p(x) > L(x; θ) (24)

= Eq(h|x)

[
log p(x,h)

q(h|x)

]
= Eq(h|x)

[
log p(x|h)

]
︸ ︷︷ ︸

Reconstruction of the
data

−Eq(h|x)

[
log q(h|x)− log p(h)

]
︸ ︷︷ ︸

KL

.

Similarly the KL term can be expanded as in the tree structures. For nodes in layer l

KLl:L =Eq(h1:L|x)
[
log q(hl:L|h1:l−1)− log p(hl:L)

]
.

Note that ch(l) may include nodes from layers lower than l − 1, and pa(l) may include nodes from
layers higher than l. Some nodes in l may not have parent. Based on conditional independence
with the topology order of a DAG, we have

q(hl:L|h1:l−1) (25)
=q(hl|h1:l−1)q(hl+1:L|hl)
=q(hl|h1:l−1)q(hl+1:L|h1:l)p(hl:L) (26)
=p(hl|hl+1:L)p(hl+1:L)
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Following (20) and with (25-26), we have

KLl:L =Eq(h1:L|x)
[
log q(hl|h1:l−1)− log p(hl|hl+1:L)

]
+ Eq(hl:L|x)

[
log q(hl+1:L|h1:l)− log p(hl+1:L)

]︸ ︷︷ ︸
KLl+1:L

.

Furthermore,

q(hl|h1:l−1) = q(hl|hch(l)), p(hl|hl+1:L) = p(hl|hpa(l)).

Hence,

KLl:L =Eq(h1:L|x)
[
log q(hl|hch(l))− log p(hl|hpa(l))

]︸ ︷︷ ︸
KLl

+KLl+1:L (27)

For nodes in layer l,

KLl =
∑
i∈l

Eq(h1:L|x)
[
log q(h(i)|hch(i))− log p(h(i)|hpa(i))

]︸ ︷︷ ︸
KL(i)

.

Recurrently applying (27) to (24) yields

L(x; θ) =Eq(h|x)
[
log p(x|h)

]
−

∑
i∈V\RG

KL(i)

−
∑
i∈RG

KL
(
q(h(i)|hch(i))||p(h(i))

)
.

For node i,
KL(i) = Eq(h|x)

[
log q(h(i)|hch(i))− log p(h(i)|hpa(i))

]
.
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