3rd Symposium on Advances in Approximate Bayesian Inference

HWA: Hyperparameters Weight Averaging in Bayesian Neural Networks

Belhal Karimi and Ping Li January 3rd 2021

Bai

首度

Agenda

Bayesian Deep Learning: Modeling and Training

HWA Method

Numerical Results

Intro: Bayesian Deep Learning

Modelling

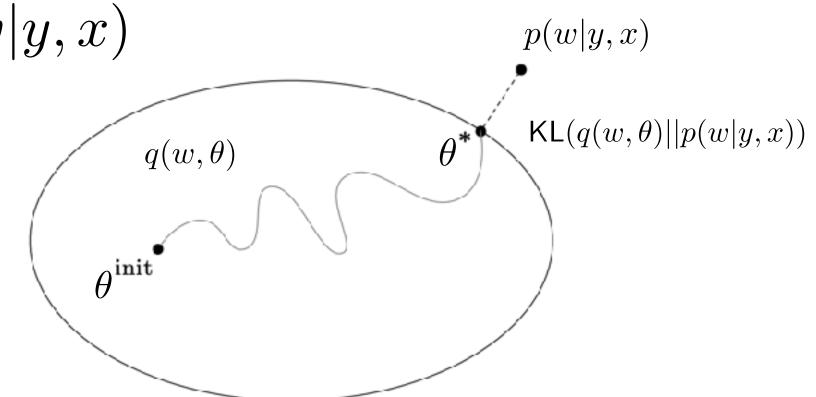
- Can we combine the advantages of neural nets (Multi-layered yet fixed basis function) and Bayesian models (Posterior prediction, model averaging)?
- Bayesian Neural Networks (BNN):
- Input-output pairs $((x_i,y_i),1\leq i\leq n)$ and w the vector of weights on which we place a prior $\pi(w)$
- Consider the following Classification problem $p(y_i|x_i,w) = \operatorname{Softmax}(f(x_i,w))$ where f is a Neural Network

Training: Objective Loss Function

- ► How to train BNNs? —> Variational Inference (VI)
 - Minimize the KL between the candidate $q(w,\theta)$ and the true posterior p(w|y,x)
 - KL term is intracable: VI optimizes the Evidence Lower Bound (ELBO)

$$\mathcal{L}(\theta) := -\mathbb{E}_{q(w;\theta)} \left[\log p(y|x, w) \right] + \mathbb{E}_{q(w;\theta)} \left[\log q(w;\theta) / \pi(w) \right]$$

ELBO is a lower bound of the incomplete log likelihood —> Maximizing it minimizes the KL



SGD based Training

Current SGD for ELBO Maximization (VI)

SGD on the hyperparameters of the weights (and no longer on the weights themselves). Assume Normal candidate

$$\mu_\ell^{k+1} = \mu_\ell^k - \gamma_{k+1} \nabla \mathcal{L}(\mu_\ell^k)$$
 Variational Proposal: $\mathcal{N}(\mu^k, \Sigma^k)$

Existing Relevant Methods

Stochastic Gradient Langevin Dynamics (SGLD) [Welling & Teh, ICML 2011]:

Cyclical Stochastic Gradient MCMC (CSGMCMC) [Zhang et. al., ICLR 2020]:

$$\alpha_k^{\text{new}} = \frac{\alpha_0}{2} \left[\cos \left(\frac{\pi \, \text{mod} \, (k-1, \lceil K/M \rceil)}{\lceil K/M \rceil} \right) + 1 \right] \qquad \textbf{SGLD}$$
 Variational Proposal: $\mathcal{N}(\mu^k - \alpha_k^{\text{new}} \nabla \tilde{U} \left(\mu^k \right), \Sigma_{new}^k)$

SGD based Training

Current SGD for ELBO Maximization (VI)

SGD on the hyperparameters of the weights (and no longer on the weights themselves). Assume Normal candidate

$$\mu_\ell^{k+1} = \mu_\ell^k - \gamma_{k+1} \nabla \mathcal{L}(\mu_\ell^k) \qquad \qquad \text{Variational Proposal:} \qquad \mathcal{N}(\mu^k, \Sigma^k)$$

What other choice of proposal can be derived?

Averaging procedure applied to proposal parameters (Diagonal covariance)

$$\mu_{\ell}^{HWA} = \frac{n_{\rm m}\mu_{\ell}^{HWA} + \mu_{\ell}^{k+1}}{n_{\rm m}+1} \quad \text{and} \quad \sigma^{HWA} = \frac{n_{\rm m}\sigma^{HWA} + (\mu_{\ell}^{k+1})^2}{n_{\rm m}+1} - (\mu_{\ell}^{HWA})^2$$

Low rank plus diagonal proposal covariance matrix as in [Maddox et. al., 2019] in SWAG

$$\Sigma = \frac{1}{2} \Sigma_{\mathrm{diag}} \ + \frac{\widehat{D} \widehat{D}^{\top}}{2(R-1)} \qquad \qquad \widehat{D}_r = \theta_r - \theta_r^{HWA} \qquad \text{quantifies how far the current estimate parameter deviate from the current averaged parameter.}$$

HWA in BNNs

HWA and its embedding in Variational Inference

Algorithm 1 HWA: Hyperparameters Weight Averaging

- 1: **Input:** Iteration index k. Trained hyperparameters $\hat{\mu}_{\ell}$ and $\hat{\sigma}$. LR γ_k . Cycle length c. Gradient vector $\nabla \mathcal{L}_{i_k}(\theta^k)$
- 2: $\gamma \leftarrow \gamma(k)$ (Cyclical LR for the iteration)
- 3: **SVI** updates:
- 4: $\mu_{\ell}^{k+1} \leftarrow \mu_{\ell}^{k} \gamma_{k} \nabla_{\mu_{\ell}} \mathcal{L}_{i_{k}}(\mu_{\ell}^{k})$ 5: $\sigma^{k+1} \leftarrow \sigma^{k} \gamma_{k} \nabla_{\sigma} \mathcal{L}_{i_{k}}(\sigma^{k})$
- 6: if mod(k, c) = 0 then
- 7: $n_{\rm m} \leftarrow k/c$ (Number of models to average over)

$$\mu_{\ell}^{HWA} \leftarrow \frac{n_{\mathrm{m}}\mu_{\ell}^{HWA} + \mu_{\ell}^{k+1}}{n_{\mathrm{m}} + 1}$$
 and $\sigma^{HWA} \leftarrow \frac{n_{\mathrm{m}}\sigma^{HWA} + (\mu_{\ell}^{k+1})^2}{n_{\mathrm{m}} + 1} - (\mu_{\ell}^{HWA})^2$

- 8: **end if**
- 9: **Return:** if $\mathbf{mod}(k,c) = 0$, $\{\{\mu_{\ell}^{HWA}\}_{l=1}^{L}, \sigma^{HWA}\}$ else, $\{\{\mu_{\ell}^{k}\}_{l=1}^{L}, \sigma^{k}\}$

- Periodic averaging of the hyperparameters

HWA in BNNs

HWA and its embedding in Variational Inference

Algorithm 2 Variational Inference with HWA for BNNs

- 1: **Input:** Trained hyperparameters $\hat{\mu}_{\ell}$ and $\hat{\sigma}$. Sequence of LR $\{\gamma_k\}_{k>0}$. Cycle length c. K iterations.
- 2: **for** k = 0, 1, ... **do**
- 3: Sample an index i_k uniformly on [n]
- 4: Sample MC batch of weights $\{w_k^m\}_{m=1}^{M_k}$ from variational candidate $q(w, \theta^k)$ with $\theta^k = (\mu^k, \Sigma^k)$ and the covariance is either diagonal (4) or low rank (5).
- 5: Compute MC approximation of the gradient vectors:

$$\nabla \mathcal{L}_{i_k}(\theta^k) \approx \frac{1}{M_k} \sum_{m=1}^{M_k} \log p(y_{i_k} | x_{i_k}, w_m^k) + \nabla K L(q(w, \theta^k) || \pi(w))$$

Plug HWA toobtain new meanand variance

- Draw samples

from candidate

- Compute MC

integration of the

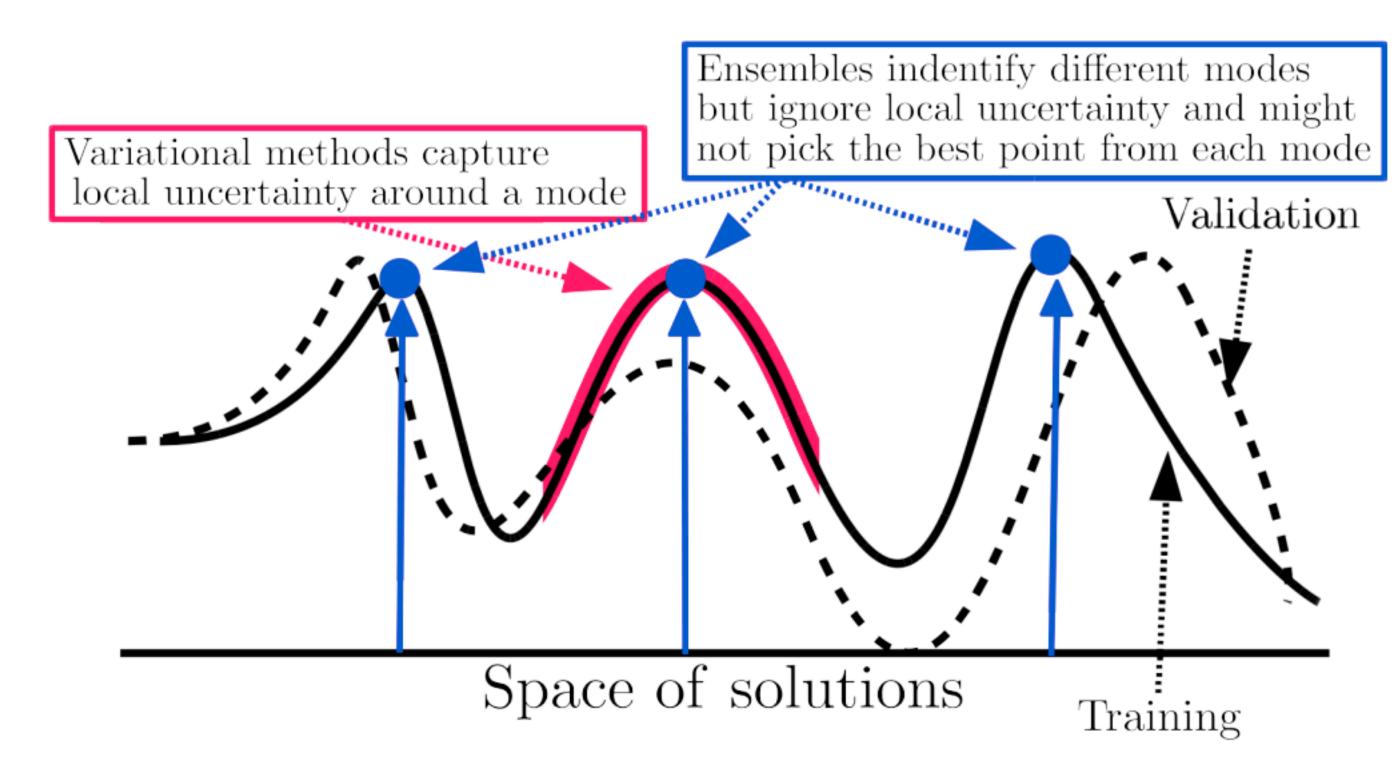
expected gradient

- 6: Update the vector of parameter estimates calling Algorithm 1: $(\mu^K, \Sigma^K) = \text{HWA}(k, c, \gamma_k, \nabla \mathcal{L}_{i_k}(\theta^k))$
- 7: end for
- 8: **Return** Fitted parameters (μ^K, Σ^K) .

Averaging in (Bayesian) NNs

Averaging Heuristics

- Why Averaging makes sense?
- VI is unimodal (mode collapse)
- Ensembles are great at training [Garipov et. al., NIPS 2018] (FGE) but bad at test time
 - Because of Mode Connectivity (specific to NN) and Ensembling (Boosting)
- SWA averaging solution in [Izmailov et. al., UAI 2019]



From [Deep Ensembles: A Loss Landscape Perspective, Fort et. al., 2020]

- Ensemble of k models requires k times more computation.
- Averaging through the iterations can interpreted as an approximation to ensembles but with convenient test-time

Numerical Results

Bayesian LeNet and Bayesian VGG

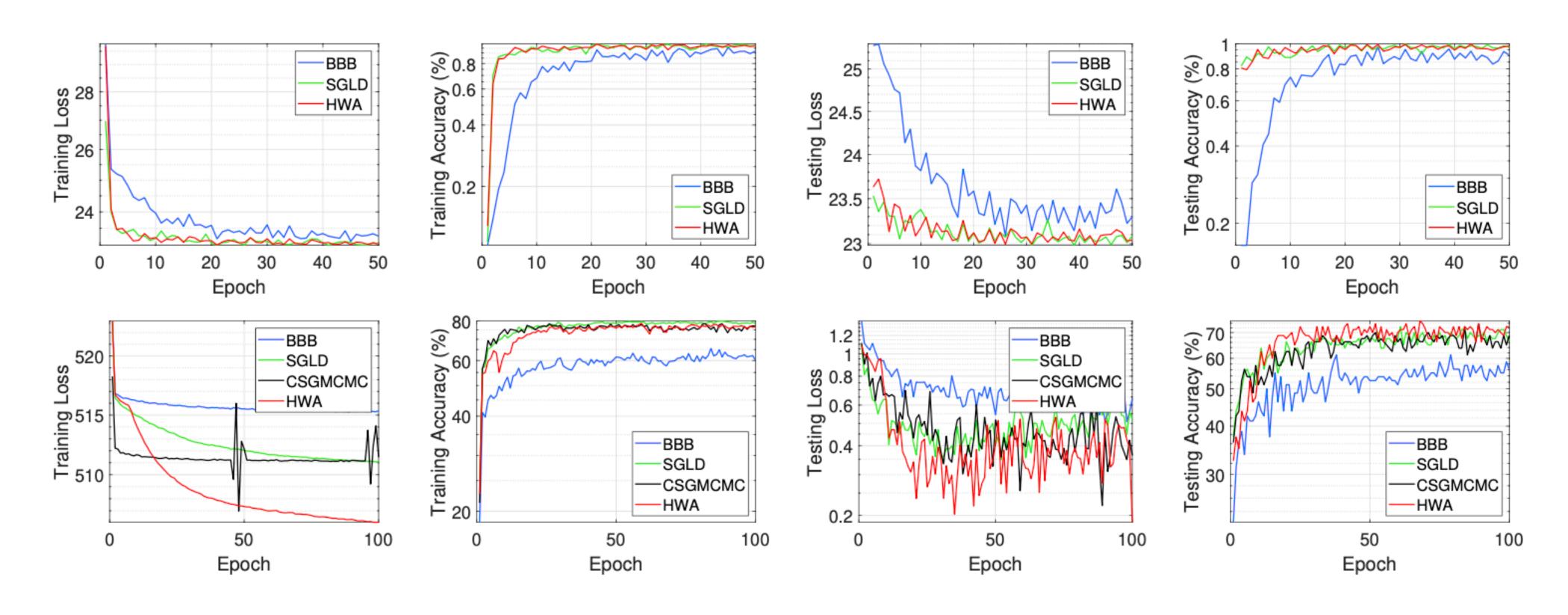


Figure 1: Comparison for Bayesian LeNet CNN architecture on MNIST dataset (top) and Bayesian VGG architecture on CIFAR-10 dataset (bottom). The plots are averaged over 5 repetitions.

Perspectives

Landscapes and Variance Reduction

- Focus on the initial algorithm HWA: Hyperparameters Weight Averaging
 - Plot Loss Landscape in 2D (PCA components)
 - Observe Mode Connectivity?
 - Observe Better Generalization?
- Find a better multiplier constant per « weak learner » (snapshots of the BNN in HWA)

Algorithm 1 HWA: Hyperparameters Weight Averaging

- 1: Input: Iteration index k. Trained hyperparameters $\hat{\mu}_{\ell}$ and $\hat{\sigma}$. LR γ_k . Cycle length c. Gradient vector $\nabla \mathcal{L}_{i_k}(\theta^k)$
- 2: $\gamma \leftarrow \gamma(k)$ (Cyclical LR for the iteration)
- 3: **SVI updates:**
- 4: $\mu_{\ell}^{k+1} \leftarrow \mu_{\ell}^{k} \gamma_{k} \nabla_{\mu_{\ell}} \mathcal{L}_{i_{k}}(\mu_{\ell}^{k})$ 5: $\sigma^{k+1} \leftarrow \sigma^{k} \gamma_{k} \nabla_{\sigma} \mathcal{L}_{i_{k}}(\sigma^{k})$
- 6: if mod(k, c) = 0 then
- $n_{\rm m} \leftarrow k/c$ (Number of models to average over)

$$\mu_{\ell}^{HWA} \leftarrow \frac{n_{\mathrm{m}}\mu_{\ell}^{HWA} + \mu_{\ell}^{k+1}}{n_{\mathrm{m}} + 1} \quad \text{and} \quad \sigma^{HWA} \leftarrow \frac{n_{\mathrm{m}}\sigma^{HWA} + (\mu_{\ell}^{k+1})^2}{n_{\mathrm{m}} + 1} - (\mu_{\ell}^{HWA})^2$$

- 8: **end if**
- 9: **Return** hyperparameters $(\{\mu_{\ell}^{HWA}\}_{l=1}^{L}, \sigma^{HWA})$.

Change the multiplier (here it is 1/n_{models}) (cf. variance reduction method)

Thank You!

belhal.karimi@gmail.com