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Maximum Likelihood Estimation (MLE)

~ We have vectors of data Y that are observed and Z that are latent
» We assume a probabilistic model on the observations Y, Q(Y, 9)
- We can define f(Z,Y,0) as the complete data likelihood and P(Z|Y,0) as the conditional distribution of Z givenY

> The MLE problem is, given a model ¢(Y,#) and some actual data Y/, find the parameter 6 which makes the
data most likely:

oML .= arg max q(Y,0)

>~ This problem is an optimization problem, which we could use any imaginable tool to solve
> In practice, it’s often hard to get expressions for the derivatives needed by gradient methods

~ Expectation-Maximization (EM) method is one popular and powerful way of proceeding, but
not the only way. It takes advantage of the latent data to complete the observations.




Context

Settings and Notations

~ Many problems in machine learning pertain to tackling an empirical risk minimization of the form

min £(0) := £(0) + R(0) with L(0) = % Z L;(0) := % Z {—logg(vi;0)}

- {¥i }i—1 are the observations, © is a convex subset of R?, R(6) is a smooth convex regularization function.

> The objective function £(0) is possibly nonconvex and is assumed to be lower bounded £(6) > —oc

Exponential Family

- Latent data model: {%i i—1 are not observed

~ Complete data likelihood belongs to the curved exponential family:

Sufficient statistics takes values in S ¢ R¢

4

[ (zi,yi50) = h (2, y:) exp ((S (i, ¥:) |0(0)) — ¥(0))



EM Method for Exponenti=1 8 #1111},

Updates Limitations

> E-step:

>~ Even though the EM has appealing features:
» Monotone in likelihood
> |nvariant w.r.t. parametrization
> Numerically stable (well defined set)

> Define the function L(-;6) : S — R as: > It is not applicable with the sheer size of today’s
data
L(s;0) := R(0) +(0) — (s|9(0))
» There exists a function 6 : S — O such that >~ Approaches based on Stochastic Optimization:
- > [Neal and Hinton, 1998]: Incremental EM (iIEM)
L(s;0(s)) < L(s;0) - [Cappé and Moulines, 2009]: Online EM (SEM)
> [Chen+, 2018]: Variance Reduces EM (seM-VR)

0 = 0(s) = argmin{R(0) + ¥(0) — (s[(0))}



Stochastic Optimization for EM Methods

General Formulation

» Stochastic EM: (FEM [NH,1998]) st =50 4 1 (5 - 55:'“) [1]
a(k+1) _ a(k) A (k) (k+1) (SEM (M, 20090 St =57 ]
sE-step: S = — Vi+1 (S - ) (sEM — VR [CZTZ.,2018]) S* ) =5t 4 (s _ kD) [3]
k - (k+1) _ k) | (k) (t)
where 7V is the stepsize and S 1) is a proxy for & (9( )) (FEM [KLMW.,2019)) SV =5""+ (5" -5,*) |
s = 8W L n1(s® —5). [4]

» M-step:

Algorithm 3 sEM algorithms

T e e ~(0) A _ . :
olk+1) é(é(k+1)) — arg Ienlél{R(H) 4 w(e) B <§(k—|—1) ‘¢(9)>} :::Jlr:z::atlon: initializations @'~ < 0, 8(9 « 5 K. .. + max. iteration
S :

Set the terminating iteration number, K € {0,..., Khax— 1}, as a discrete

r.v. with: »
P(K=k) = ——7. (42)

Dimo e
Iteration k: Given the current state of the chain wlgt_l

- We simplify the notations:
).

(k) — (B (k)
S; = Si (H ) — /ZS (2i5Yi) (Z’L‘y’w o ) p(dzi) 1. Draw index i, € [1, n| uniformly (and ji € [1, n] for fiEM).
(k) . = H(k) B 1 " _(k) 2. Compute the surrogate sufficient statistics Sk+1) using [1] or [2]
S5Y7 =35 — E St or [3] or [4]
1—=1

3. Compute §5*1) via the sE-step
é(k) - mLk/mJ First iteration number of A
the current epoch

. Compute 9(k+1) via the M-step

Return: H(K).




Global Convergence

Assumptions

(A1) The function ¢ is smooth and bounded on the

interior of © , noted int(©)
Forall (0,0') € int(©), [[J%(8) —J% (6')|| <L, |0 — ¢

and ||J¢ (8")|| < Cy

(A2) The conditional distribution is smooth on int(©)
p(2|yi;0) —p (2|yi;0")| <L, ||0 — &'

(A3) The function 6 — L(s;0) := R(0) + ¥ (0) — (s|o(0))
admits a unique global minimum
Also, J (6(s)) is full rank and 6(s) is Ly-Lipschitz

Define:

B(s) = J5(8(s)) (HY (s, 0(s))) " I5(8(s))”

(A4) Umax = SIElIS) HB(S)H < 00 aﬂd 0 < Umin -— ;Ielg )\min(B(S))

|B(s) = B(s)|| < Lplls — 5|

Incremental EM Method

Lemma
Under (A1)-(A4), define ¢ (0;0') := Q; (0;0") — L:(0)
We have

|Ve; (6;0') — Ve, (6;0")|| <L.|0— 8|
where L. := CyCzL, + CsLy

Theorem
Under (A1)-(A4) for the iEM [1] forany Kpax > 1

[fve (o)) < 2o sfe (67) -2 (0"

where L. is defined above and K is a uniform random
variable on |0, Kimax — 1] and independent

of the {ix},5"




Stochastic EM as Scaled Gradient Methods

» From a (Scaled) Gradients Method point of view, we

consider the minimization problem: — Theorem (sEM-VR)
There exists a constant 1 € (0,1) such that if
. _ _ 1 i _ - _ MUmin B n
min V(s) := L(8(s)) = R(8(s)) + — Y £i0(s) | Lv=max(lv,Ls) 7= R T Sy
v=1 Then:
| 2 2 QI U2
J 5(K) < n3 Y max me s(0)) _ &(Kmax)
- Lemma _va (S )H | = K ax 2 {V (S ) v (S )}
Under (A1)-(A4), we have
I5i(6(s)) —5; (0(s))]| < Ls s — &'l —  Theorem (fiEM)
. 1 .
IVV(s) = VV (s')|| < Ly ||s — §'| _There exists a constant 4 E@(Q ) such that if
L,:=max(Ly,Ls) 7=-——- o:=max(6,1+ 4vmin)
aL,n2/3
where LS — CZLpLH and LV .= Umax (1 + Ls) + LBOS Then:

- ] 271 2
([ (5[] 2 B o (59) v (05




Numerical Applications

Experiments

Gaussian Mixture Models (GMM) > Fixed sample size: size n = 10* and run to get o
Stepsize for sEM v = 3/(k + 10)
Stepsize for seEM-VR and fiEM prop. to 1/712/3

» Fit a GMM model to a set of n observations
» Each of M components with unit variance
~ The complete log likelihood reads:

log f (2i,9::0) = Y 1gmy (21) [log (wm) — 12, /2]

m=1

M
+ Z Ly (25) my; + constant

m=1

m=1

0:=(w,i1)  w={Wmlmy =ty

> Penalization used:

M
0
R(0) = 5 n; 12 — log Dir(w; M, €)
» Numerical: GMM with M=2 and 1 = —p2 = 0.5 2 4 6 8 10



Numerical Applications [

Gaussian Mixture Models (GMM) > Fixed sample size: size n = 10* and run to get o
Stepsize for sEM v = 3/(k + 10)
Stepsize for seEM-VR and fiEM prop. to 1/712/3

> Fit a GMM model to a set of n observations
» Each of M components with unit variance

» The complete log likelihood reads: -Varying sample size: nb. Iterations required to

M ; reach a precision of 1072 from n = 103 to n = 10°
log f (2i,4:;0) = > 1imy (1) [log (W) — 12, /2]

m=1

M
+ Z Ly (25) my; + constant

m=1

m=1

0:=(w,i1)  w={Wmlmy =ty

> Penalization used:

lteration

.

12— log Dir(w; M, ¢)

iNgE

> Numerical: GMM with M=2 and (1 = —p2 = 0.5 103 T T T 1o
Problem size n



Numerical Applications

Probabilistic Latent Semantic Analysis Experiments
> Consider D documents with terms from a 4 g e
vocabulary of size V. ~4.8-
>~ Data is summarized by a list of tokens 49
{yi}i:1 Yi = ( ( )v y§ )) O > | | , i “ |
> The goal of pLSA is to classify the documents into K S A T
topics which is modeled as a latent variable D IN7ZS Z i B s s b
associated with each token zi € [1, K] _5'5_ - | | - fiEM
0 2 4 6 8
(tld) (d)
lOg f(zza yu — L L lOg }(Zza Y, ) —3.1-
k=1 d=1 5.2
KV ~5.3-
+ > 1067, ) k0 (26,5,™) o 54
k=1v=1 1 -5.5;
L
—5.6-
> Penalization used: 5.7
RO 91y = _10g Dir(0Y: K, ') — log Dir(8™V; v, g) 8

9 = (601D gl



Conclusion



Take-Aways

>~ We studied the global convergence of stochastic EM Methods
~ Globally (independent of initialization)
~ Non-asymptotic results

>~ We used a Majorization-Minimization scheme to analyze the incremental EM method

> We interpreted the variance-reduced and the fast incremental method using a scaled gradient
scheme to find a stationary point of a well defined Lyapunov function



Thank You!



