On the Global Convergence of (Fast) Incremental EM Methods

Belhal Karimi, Hoi-To Wai, Eric Moulines, Marc Lavielle

Maximum Likelihood Estimation (MLE)

- We have vectors of data Y that are observed and Z that are latent
- We assume a probabilistic model on the observations Y, $g(Y, \theta)$
- We can define f(Z,Y, heta) as the complete data likelihood and p(Z|Y, heta) as the conditional distribution of Z given Y
- The MLE problem is, given a model $g(Y, \theta)$ and some actual data Y, find the parameter θ which makes the data most likely:

$$\theta^{ML} := \arg \max_{\theta} g(Y, \theta)$$

- > This problem is an optimization problem, which we could use any imaginable tool to solve
- In practice, it's often hard to get expressions for the derivatives needed by gradient methods
- Expectation-Maximization (EM) method is one popular and powerful way of proceeding, but not the only way. It takes advantage of the latent data to complete the observations.

Context

Settings and Notations

Many problems in machine learning pertain to tackling an empirical risk minimization of the form

$$\min_{\theta \in \Theta} \overline{\mathcal{L}}(\theta) := \mathcal{L}(\theta) + \mathrm{R}(\theta) \qquad \text{ with } \qquad \mathcal{L}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}_i(\theta) := \frac{1}{n} \sum_{i=1}^{n} \left\{ -\log g\left(y_i;\theta\right) \right\}$$

- $\{y_i\}_{i=1}^n$ are the observations, Θ is a convex subset of \mathbb{R}^d , $\mathrm{R}(\theta)$ is a smooth convex regularization function.
- The objective function $\overline{\mathcal{L}}(\theta)$ is possibly **nonconvex** and is assumed to be **lower bounded** $\overline{\mathcal{L}}(\theta) > -\infty$

Exponential Family

- Latent data model: $\{z_i\}_{i=1}^n$ are not observed
- Complete data likelihood belongs to the curved exponential family:

Sufficient statistics takes values in $\mathsf{S} \subset \mathbb{R}^d$

$$f(z_i, y_i; \theta) = h(z_i, y_i) \exp(\langle S(z_i, y_i) | \phi(\theta) \rangle - \psi(\theta))$$

EM Method for Exponential Family

Updates

• E-step:

$$\overline{\mathbf{s}}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \overline{\mathbf{s}}_i(\theta)$$

where:

$$\overline{\mathbf{s}}_{i}(\theta) = \int_{\mathbf{Z}} S(z_{i}, y_{i}) p(z_{i}|y_{i}; \theta) \mu(dz_{i})$$

- Define the function $L(\cdot; \theta): \mathsf{S} o \mathbb{R}$ as:

$$L(s;\theta) := R(\theta) + \psi(\theta) - \langle s | \phi(\theta) \rangle$$

• There exists a function $\bar{\theta}:\mathsf{S}\mapsto\Theta$ such that

$$L(s; \bar{\theta}(s)) \le L(s; \theta)$$

M-step:

$$\theta = \bar{\theta}(\bar{s}) = \arg\min_{\theta \in \Theta} \{ R(\theta) + \psi(\theta) - \langle s | \phi(\theta) \rangle \}$$

Limitations

- Even though the EM has appealing features:
 - Monotone in likelihood
 - Invariant w.r.t. parametrization
 - Numerically stable (well defined set)
- It is not applicable with the sheer size of today's data
- Approaches based on Stochastic Optimization:
 - ► [Neal and Hinton, 1998]: Incremental EM (iEM)
 - ► [Cappé and Moulines, 2009]: Online EM (sEM)
 - ► [Chen+, 2018]: Variance Reduces EM (sEM-VR)

Stochastic Optimization for EM Methods

General Formulation

Stochastic EM:

sE-step:
$$\hat{\mathbf{s}}^{(k+1)} = \hat{\mathbf{s}}^{(k)} - \gamma_{k+1} \left(\hat{\mathbf{s}}^{(k)} - \mathcal{S}^{(k+1)} \right)$$
 where γ_k is the stepsize and $\mathcal{S}^{(k+1)}$ is a proxy for $\overline{\mathbf{s}} \left(\boldsymbol{\theta}^{(k)} \right)$

M-step:

$$\theta^{(k+1)} = \bar{\theta}(\hat{\mathbf{s}}^{(k+1)}) = \arg\min_{\theta \in \Theta} \{ R(\theta) + \psi(\theta) - \left\langle \hat{\mathbf{s}}^{(k+1)} | \phi(\theta) \right\rangle \}$$

We simplify the notations:

$$\begin{split} & \bar{\mathbf{s}}_i^{(k)} := \bar{\mathbf{s}}_i \left(\boldsymbol{\theta}^{(k)} \right) = \int_{\mathsf{Z}} S\left(z_i, y_i \right) p\left(z_i | y_i; \hat{\boldsymbol{\theta}}^{(k)} \right) \mu \left(\mathrm{d} z_i \right) \\ & \bar{\mathbf{s}}^{(k)} := \bar{\mathbf{s}} \left(\boldsymbol{\theta}^{(k)} \right) = \frac{1}{n} \sum_{i=1}^n \bar{\mathbf{s}}_I^{(k)} \\ & \ell(k) := m \lfloor k/m \rfloor \quad \text{First iteration number of the current epoch} \end{split}$$

(iEM [NH, 1998])
$$S^{(k+1)} = S^{(k)} + \frac{1}{n} (\bar{\mathbf{s}}_{i_k}^{(k)} - \bar{\mathbf{s}}_{i_k}^{(\tau_{i_k}^k)})$$
 [1]
$$(sEM [CM, 2009]) \qquad S^{(k+1)} = \bar{\mathbf{s}}_{i_k}^{(k)}$$
 [2]
$$(sEM - VR [CZTZ., 2018]) \qquad S^{(k+1)} = \bar{\mathbf{s}}^{(\ell(k))} + (\bar{\mathbf{s}}_{i_k}^{(k)} - \bar{\mathbf{s}}_{i_k}^{(\ell(k))})$$
 [3]
$$(fiEM [KLMW., 2019]) \qquad S^{(k+1)} = \overline{S}^{(k)} + (\bar{\mathbf{s}}_{i_k}^{(k)} - \bar{\mathbf{s}}_{i_k}^{(t_{i_k}^k)})$$
 [4]

Algorithm 3 sEM algorithms

Initialization: initializations $\hat{\boldsymbol{\theta}}^{(0)} \leftarrow 0$, $\hat{\mathbf{s}}^{(0)} \leftarrow \overline{\mathbf{s}}^{(0)}$, $K_{\text{max}} \leftarrow \text{max}$. iteration number.

Set the terminating iteration number, $K \in \{0, \dots, K_{\text{max}} - 1\}$, as a discrete r.v. with:

$$P(K = k) = \frac{\gamma_k}{\sum_{\ell=0}^{K_{\text{max}}-1} \gamma_\ell}.$$
 (42)

Iteration k: Given the current state of the chain $\psi_i^{(t-1)}$:

- 1. Draw index $i_k \in [1, n]$ uniformly (and $j_k \in [1, n]$ for fiEM).
- 2. Compute the surrogate sufficient statistics $S^{(k+1)}$ using [1] or [2] or [3] or [4]
- 3. Compute $\hat{\mathbf{s}}^{(k+1)}$ via the sE-step
- 4. Compute $\hat{\boldsymbol{\theta}}^{(k+1)}$ via the M-step

Return: $\boldsymbol{\theta}^{(K)}$.

Global Convergence

Assumptions

(A1) The function ϕ is smooth and bounded on the interior of Θ , noted $\operatorname{int}(\Theta)$ For all $(\theta,\theta')\in\operatorname{int}(\Theta)$, $\left\|\operatorname{J}_{\phi}^{\theta}(\theta)-\operatorname{J}_{\phi}^{\theta}\left(\theta'\right)\right\|\leq\operatorname{L}_{\phi}\left\|\theta-\theta'\right\|$ and $\left\|\operatorname{J}_{\phi}^{\theta}\left(\theta'\right)\right\|\leq C_{\phi}$

(A2) The conditional distribution is smooth on $int(\Theta)$

$$|p(z|y_i; \boldsymbol{\theta}) - p(z|y_i; \boldsymbol{\theta}')| \le L_p ||\boldsymbol{\theta} - \boldsymbol{\theta}'||$$

(A3) The function $\theta \to L(s;\theta) := R(\theta) + \psi(\theta) - \langle s | \phi(\theta) \rangle$ admits a unique global minimum Also, $J_{\phi}^{\theta}(\overline{\theta}(s))$ is full rank and $\overline{\theta}(s)$ is L_{θ} -Lipschitz

Define:

$$B(\mathbf{s}) := J_{\phi}^{\theta}(\overline{\boldsymbol{\theta}}(\mathbf{s})) \left(H_{L}^{\theta}(\mathbf{s}, \overline{\boldsymbol{\theta}}(\mathbf{s})) \right)^{-1} J_{\phi}^{\boldsymbol{\theta}}(\overline{\boldsymbol{\theta}}(\mathbf{s}))^{\top}$$

(A4)
$$v_{\max}:=\sup_{\mathbf{s}\in S}\|\mathrm{B}(\mathbf{s})\|<\infty$$
 and $0< v_{\min}:=\inf_{\mathbf{s}\in S}\lambda_{\min}(\mathrm{B}(\mathbf{s}))$
$$\|B(s)-B\left(s'\right)\|\leq L_B\|s-s'\|$$

Incremental EM Method

Lemma

Under (A1)-(A4), define $e_i(\theta; \theta') := Q_i(\theta; \theta') - \mathcal{L}_i(\theta)$ We have

$$\|\nabla e_i(\boldsymbol{\theta}; \boldsymbol{\theta}') - \nabla e_i(\overline{\boldsymbol{\theta}}; \boldsymbol{\theta}')\| \leq L_e \|\boldsymbol{\theta} - \overline{\boldsymbol{\theta}}\|$$

where $L_e := C_\phi C_\mathrm{Z} \mathrm{L}_p + C_\mathrm{S} \mathrm{L}_\phi$

Theorem

Under (A1)-(A4) for the iEM [1] for any $K_{\rm max} \geq 1$

$$\mathbb{E}\left[\left\|\nabla \overline{\mathcal{L}}\left(\boldsymbol{\theta}^{(K)}\right)\right\|^{2}\right] \leq n \frac{2L_{e}}{K_{\max}} \mathbb{E}\left[\overline{\mathcal{L}}\left(\boldsymbol{\theta}^{(0)}\right) - \overline{\mathcal{L}}\left(\boldsymbol{\theta}^{(K_{\max})}\right)\right]$$

where L_e is defined above and K is a uniform random variable on $\left[0,K_{\max}-1\right]$ and independent of the $\{i_k\}_{k=0}^{K_{\max}}$

Stochastic EM as Scaled Gradient Methods

From a (Scaled) Gradients Method point of view, we consider the minimization problem:

$$\min_{\mathbf{s} \in S} V(\mathbf{s}) := \overline{\mathcal{L}}(\overline{\boldsymbol{\theta}}(\mathbf{s})) = R(\overline{\boldsymbol{\theta}}(\mathbf{s})) + \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}_i(\overline{\boldsymbol{\theta}}(\mathbf{s}))$$

Lemma

Under (A1)-(A4), we have

$$\left\|\overline{\mathbf{s}}_{i}(\overline{\boldsymbol{\theta}}(\mathbf{s})) - \overline{\mathbf{s}}_{i}(\overline{\boldsymbol{\theta}}(\mathbf{s}'))\right\| \leq \mathbf{L}_{\mathbf{s}} \left\|\mathbf{s} - \mathbf{s}'\right\|$$

$$\|\nabla V(\mathbf{s}) - \nabla V(\mathbf{s}')\| \le \mathbf{L}_{V} \|\mathbf{s} - \mathbf{s}'\|$$

where $L_s := C_Z L_p L_\theta$ and $L_V := v_{\max} (1 + L_s) + L_B C_S$

Theorem (sEM-VR)

There exists a constant $\mu \in (0,1)$ such that if

$$\overline{L}_v := \max(L_V, L_s) \qquad \gamma = \frac{\mu v_{\min}}{\overline{L}_v n^{2/3}} \qquad m = \frac{n}{2\mu^2 v_{\min}^2 + \mu}$$

Then:

$$\mathbb{E}\left[\left\|\nabla V\left(\hat{s}^{(K)}\right)\right\|^{2}\right] \leq n^{\frac{2}{3}} \frac{2\overline{L}_{v}}{\mu K_{\max}} \frac{v_{\max}^{2}}{v_{\min}^{2}} \mathbb{E}\left[V\left(\hat{s}^{(0)}\right) - V\left(\hat{s}^{(K_{\max})}\right)\right]$$

Theorem (fiEM)

There exists a constant $\mu \in (0,1)$ such that if

$$\overline{L}_v := \max(L_V, L_s) \quad \gamma = \frac{v_{\min}}{\alpha \overline{L}_v n^{2/3}} \quad \alpha := \max(6, 1 + 4v_{\min})$$

Then:

$$\mathbb{E}\left[\left\|\nabla V\left(\hat{\boldsymbol{s}}^{(K)}\right)\right\|^{2}\right] \leq n^{\frac{2}{3}} \frac{\alpha^{2} \overline{L}_{v}}{K_{\max}} \frac{v_{\max}^{2}}{v_{\min}^{2}} \mathbb{E}\left[V\left(\hat{\boldsymbol{s}}^{(0)}\right) - V\left(\hat{\boldsymbol{s}}^{(K_{\max})}\right)\right]$$

Numerical Applications

Gaussian Mixture Models (GMM)

- Fit a GMM model to a set of n observations
- Each of M components with unit variance
- The complete log likelihood reads:

$$\log f(z_i, y_i; \boldsymbol{\theta}) = \sum_{m=1}^{M} 1_{\{m\}} (z_i) \left[\log (\omega_m) - \mu_m^2 / 2 \right] + \sum_{m=1}^{M} 1_{\{m\}} (z_i) \mu_m y_i + \text{constant}$$

$$\theta := (\omega, \mu)$$
 $\omega = \{\omega_m\}_{m=1}^{M-1}$ $\mu = \{\mu_m\}_{m=1}^{M}$

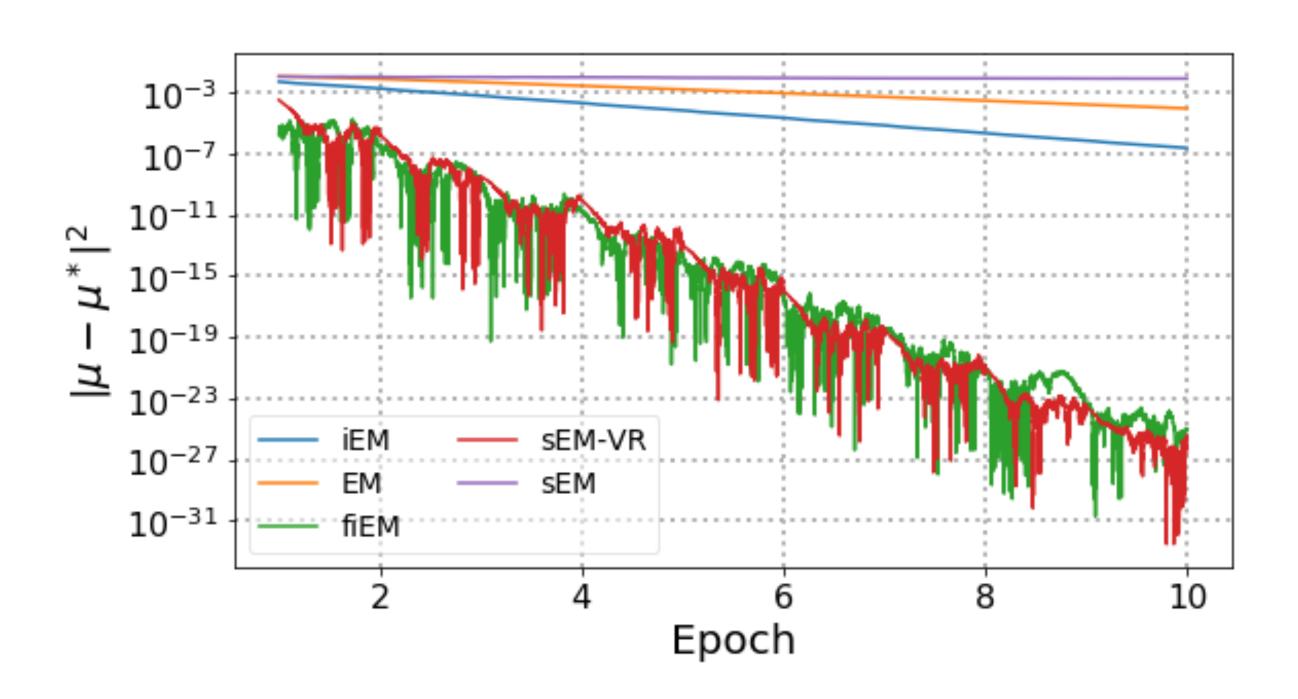
Penalization used:

$$R(\boldsymbol{\theta}) = \frac{\delta}{2} \sum_{m=1}^{M} \mu_m^2 - \log Dir(\boldsymbol{\omega}; M, \epsilon)$$

• Numerical: GMM with M=2 and $\mu_1=-\mu_2=0.5$

Experiments

Fixed sample size: size $n=10^4$ and run to get μ^* Stepsize for sEM $\gamma_k=3/(k+10)$ Stepsize for sEM-VR and fiEM prop. to $1/n^{2/3}$



Numerical Applications

Gaussian Mixture Models (GMM)

- Fit a GMM model to a set of n observations
- Each of M components with unit variance
- The complete log likelihood reads:

$$\log f(z_i, y_i; \boldsymbol{\theta}) = \sum_{m=1}^{M} 1_{\{m\}} (z_i) \left[\log (\omega_m) - \mu_m^2 / 2 \right] + \sum_{m=1}^{M} 1_{\{m\}} (z_i) \mu_m y_i + \text{ constant}$$

$$\theta := (\omega, \mu)$$
 $\omega = \{\omega_m\}_{m=1}^{M-1}$ $\mu = \{\mu_m\}_{m=1}^{M}$

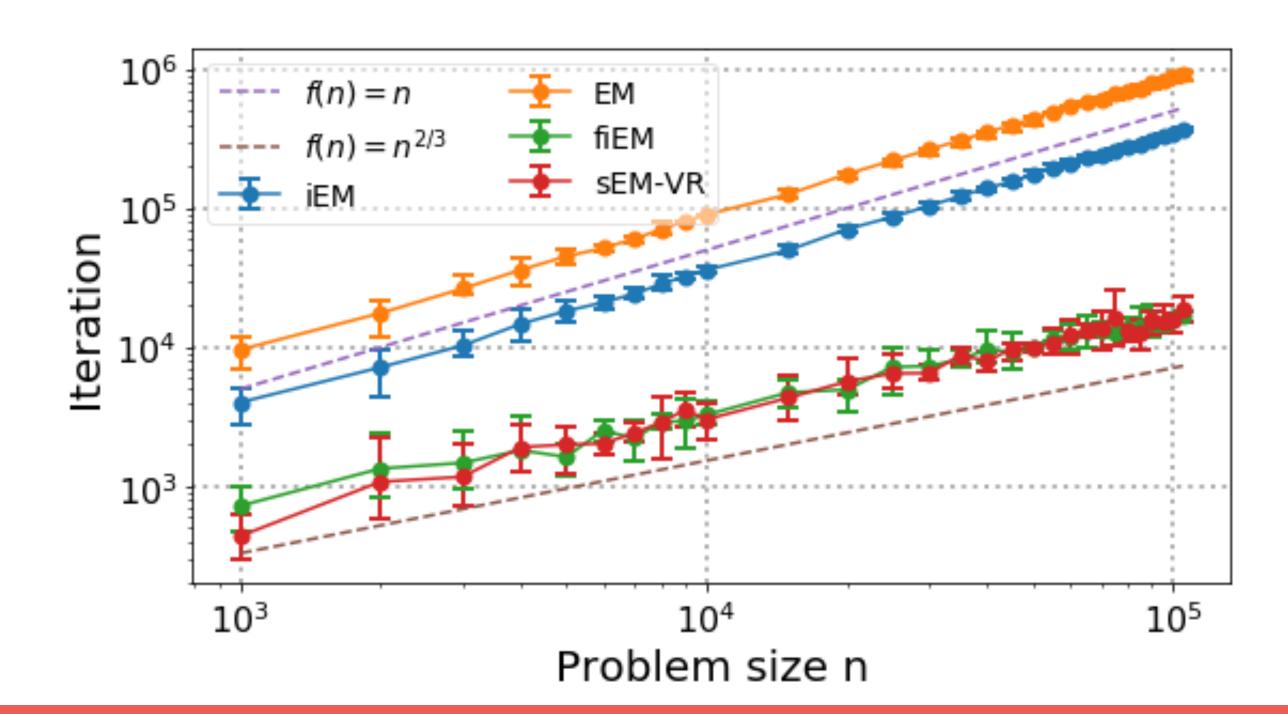
Penalization used:

$$R(\boldsymbol{\theta}) = \frac{\delta}{2} \sum_{m=1}^{M} \mu_m^2 - \log Dir(\boldsymbol{\omega}; M, \epsilon)$$

• Numerical: GMM with M=2 and $\mu_1=-\mu_2=0.5$

Experiments

- Fixed sample size: size $n=10^4$ and run to get μ^* Stepsize for sEM $\gamma_k=3/(k+10)$ Stepsize for sEM-VR and fiEM prop. to $1/n^{2/3}$
- **Varying sample size:** nb. Iterations required to reach a precision of 10^{-3} from $n=10^3$ to $n=10^5$



Numerical Applications

Probabilistic Latent Semantic Analysis

- Consider D documents with terms from a vocabulary of size V.
- Data is summarized by a list of tokens

$$\{y_i\}_{i=1}^n$$
 $y_i = (y_i^{(d)}, y_i^{(w)})$

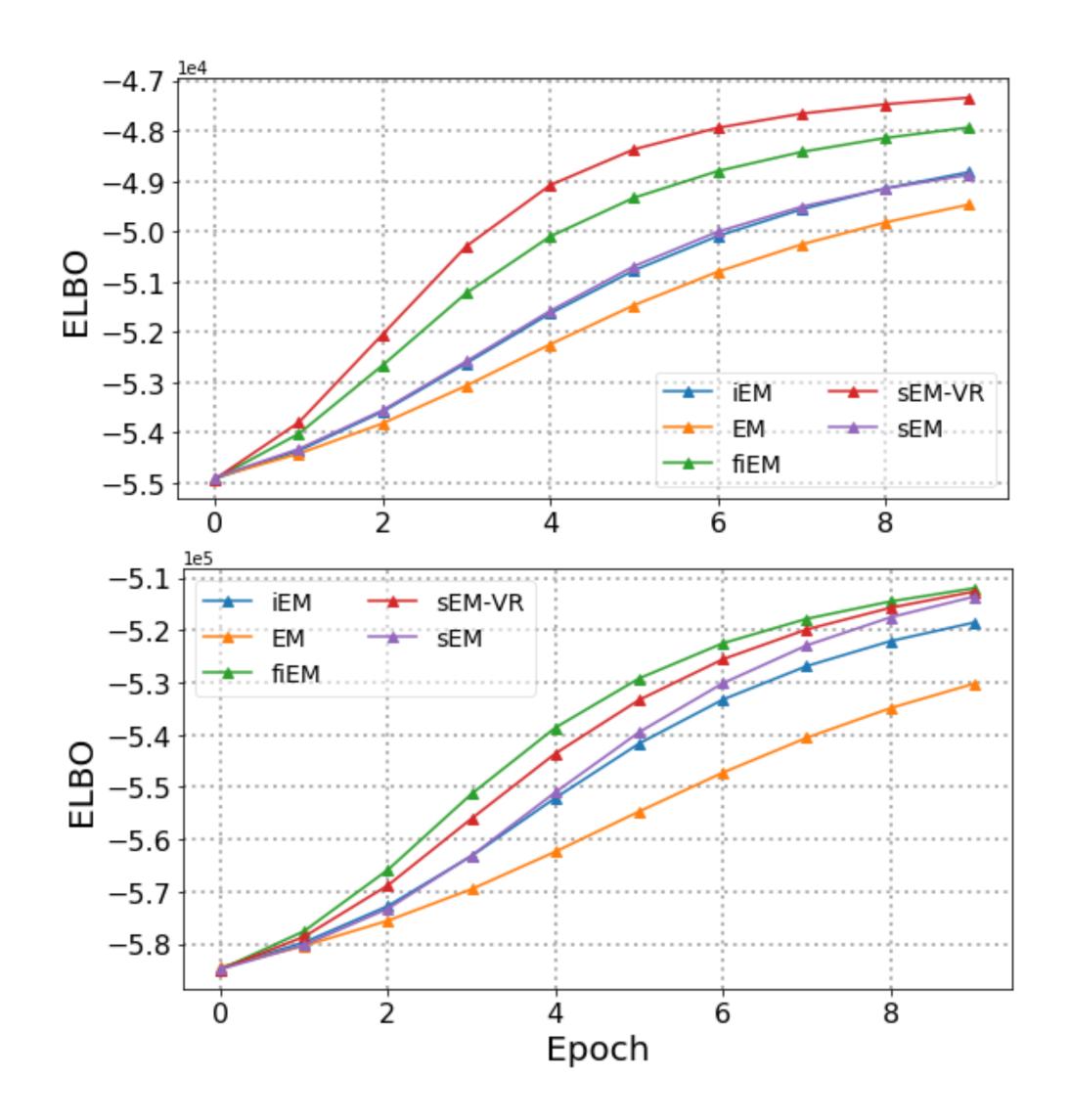
The goal of pLSA is to classify the documents into K topics which is modeled as a latent variable associated with each token $z_i \in [1, K]$

$$\log f(z_i, y_i; \boldsymbol{\theta}) = \sum_{k=1}^{K} \sum_{d=1}^{D} \log(\boldsymbol{\theta}_{d,k}^{(\text{t}|d)}) \mathbb{1}_{\{k,d\}}(z_i, y_i^{(\text{d})})$$
$$+ \sum_{k=1}^{K} \sum_{v=1}^{V} \log(\boldsymbol{\theta}_{k,v}^{(\text{w}|t)}) \mathbb{1}_{\{k,v\}}(z_i, y_i^{(\text{w})})$$

Penalization used:

$$R(\boldsymbol{\theta}^{(t|d)}, \boldsymbol{\theta}^{(w|t)}) = -\log Dir(\boldsymbol{\theta}^{(t|d)}; K, \alpha') - \log Dir(\boldsymbol{\theta}^{(w|t)}; V, \beta')$$
$$\boldsymbol{\theta} := (\boldsymbol{\theta}^{(t|d)}, \boldsymbol{\theta}^{(w|t)})$$

Experiments



Conclusion

Take-Aways

- We studied the global convergence of stochastic EM Methods
 - Globally (independent of initialization)
 - Non-asymptotic results
- We used a Majorization-Minimization scheme to analyze the incremental EM method
- We interpreted the variance-reduced and the fast incremental method using a scaled gradient scheme to find a stationary point of a well defined Lyapunov function

Thank You!